DOI QR코드

DOI QR Code

Effects of Annealing Pressures on the Ordering and Microstructures of FePt:Ag Nanocomposite Films

  • Li, Xiaohong (College of Physics Science and Technology, Hebei University) ;
  • Feng, Zhaodi (College of Physics Science and Technology, Hebei University) ;
  • Li, Yang (College of Physics Science and Technology, Hebei University) ;
  • Song, Wenpeng (State Key Laboratory of Metastable Materials Science and Technology, Yanshan University) ;
  • Zhang, Qian (State Key Laboratory of Metastable Materials Science and Technology, Yanshan University) ;
  • Liu, Baoting (College of Physics Science and Technology, Hebei University)
  • Received : 2013.08.20
  • Accepted : 2013.10.30
  • Published : 2013.12.31

Abstract

FePt:Ag (100 nm) nanocomposite thin films were prepared on naturally-oxidized Si substrates by dc magnetron sputtering at room temperature. X-ray diffraction (XRD) and transmission electron microscopy (TEM) are used to investigate the effects of annealing pressures on the ordering processes and microstructures of these films. The average sizes for the $L1_0$ ordered domains and the FePt grains are reduced to d = 9 nm and D = 13 nm from d = 19 nm and D = 34 nm, respectively, when the annealing pressure is enhanced to 0.6 GPa from room pressure at 873 K. Furthermore, the size distribution is improved into a narrow range. With increasing pressure, the coercivity of $L1_0$-FePt:Ag thin films decreases from 15.1 to 7.6 kOe. In the present study, the effects of high pressure on the $L1_0$ ordering processes and microstructures of FePt:Ag nanocomposite films were discussed.

Keywords

References

  1. D. K. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J.-U. Thiele, and M. F. Doerner, IEEE Trans. Magn. 36, 10 (2000). https://doi.org/10.1109/20.824418
  2. H. S. Ko, A. Perumal, and S. C. Shin, Appl. Phys. Lett. 82, 2311 (2003). https://doi.org/10.1063/1.1564865
  3. J. S. Chen, C. J. Sun, and G. M. Chow, Int. J. Product Development 41, 238 (2008).
  4. Y. F. Ding, J. S. Chen, B. C. Lim, J. F. Hu, B. Liu, and G. Ju, Appl. Phys. Lett. 93, 032506 (2008). https://doi.org/10.1063/1.2953173
  5. C. P. Luo and D. J. Sellmyer, Appl. Phys. Lett. 75, 3162 (1999). https://doi.org/10.1063/1.125264
  6. K. Kang, Z. G. Zhang, C. Papusoi, and T. Suzuki, Appl. Phys. Lett. 84, 404 (2004). https://doi.org/10.1063/1.1641168
  7. G. Q. Li, Y. P. Zheng, K. Hayashi, and K. Takanashi, Appl. Phys. Lett. 99, 043108 (2011). https://doi.org/10.1063/1.3619204
  8. J. J. Lin, T. Zhang, P. Lee, S. V. Springham, T. L. Tan, R. S. Rawat. T. White, R. Ramanujan, and J. Guo, Appl. Phys. Lett. 91, 063120 (2007). https://doi.org/10.1063/1.2768904
  9. D. W. Chun, S. M. Kim, G. H. Kim, and W. Y. Jeung, J. of Magnetics 14, 7 (2009). https://doi.org/10.4283/JMAG.2009.14.1.007
  10. Y. K. Takahashi, T. Ohkubo, M. Ohnuma, and K. Hono, J. Appl. Phys. 93, 7166 (2003). https://doi.org/10.1063/1.1555895
  11. T. Miyazaki, O. Kitakami, S. Okamoto, Y. Shimada, Z. Akase, Y. Murakami, D. Shindo, Y. K. Takahashi, and K. Hono, Phys. Rew. B 72, 144419 (2005). https://doi.org/10.1103/PhysRevB.72.144419
  12. P. Klugkist, K. Ratzke, and F. Faupel, Phys. Rev. Lett. 81, 614 (1998). https://doi.org/10.1103/PhysRevLett.81.614
  13. X. H. Li, F. Q. Wang, B. T. Liu, D. F. Guo, and X. Y. Zhang, Appl. Phys. Lett. 98, 141912 (2011). https://doi.org/10.1063/1.3575558
  14. X. H. Li, F. Q. Wang, Y. G. Liu, L. Xu, J. W. Zhao, B. T. Liu, and X. Y. Zhang, Appl. Phys. Lett. 94, 172512 (2009). https://doi.org/10.1063/1.3129874
  15. C. Z. Yang, Y. G. Liu, H. Y. Sun, D. F. Guo, X. H. Li, W. Li, B. T. Liu, and X. Y. Zhang, Nanotechnology 19, 095704 (2008). https://doi.org/10.1088/0957-4484/19/9/095704
  16. G. K. Williamson and W. H. Hall, Acta Metal. 1, 22 (1953). https://doi.org/10.1016/0001-6160(53)90006-6
  17. B. E. Warren, X-Ray Diffraction, Dover, New York (1990) pp. 206-216.
  18. X. Y. Zhang, F. X. Zhang, J. W. Zhang, W. Yu, M. Zhang, J. H. Zhao, R. P. Liu, Y. F. Xu, and W. K. Wang, J. Appl. Phys. 84, 1918 (1998). https://doi.org/10.1063/1.368319
  19. X. H. Li, B. T. Liu, W. Li, H. Y. Sun, D. Q. Wu, and X. Y. Zhang, J. Appl. Phys. 101, 093911 (2007). https://doi.org/10.1063/1.2730568
  20. Y. Z Zhou, J. S. Chen, G. M. Chow, and J. P. Wang, J. Appl. Phys 93, 7577 (2003). https://doi.org/10.1063/1.1558260
  21. X. H. Li, B. T. Liu, X. B. Yan, H. Y. Sun, and X. Y. Zhang, J. Phys. D: Appl. Phys 41, 135009 (2008). https://doi.org/10.1088/0022-3727/41/13/135009
  22. W. Li, L. L. Li, Y. Nan, X. H. Li, X. Y. Zhang, D. V. Gunderov, V. V. Stolyarov, and A. G. Popov, Appl. Phys. Lett. 91, 062509 (2007). https://doi.org/10.1063/1.2768023
  23. Y. G. Liu, L. Xu, Q. F. Wang, W. Li and X. Y. Zhang, Appl. Phys. Lett. 94, 172502 (2009). https://doi.org/10.1063/1.3126444
  24. X. Y. Zhang, Y. Guan, L. Yang, and J. W. Zhang, Appl. Phys. Lett. 79, 2426 (2001). https://doi.org/10.1063/1.1409269
  25. W. Wu, W. Li, H. Y. Sun, H. Li, X. H. Li, B. T. Liu, and X. Y. Zhang, Nanotechnology 19, 285603 (2008). https://doi.org/10.1088/0957-4484/19/28/285603