DOI QR코드

DOI QR Code

라우드니스 복원에 기반한 잡음 환경에서의 오디오 청취 향상

Audio Listening Enhancement in Adverse Environment based on Loudness Restoration

  • 박준형 (광주과학기술원 정보통신공학부) ;
  • 신종원 (광주과학기술원 정보통신공학부)
  • Pak, Junhyeong (School of Information and Communications, Gwangju Institute of Science and Technology) ;
  • Shin, Jong Won (School of Information and Communications, Gwangju Institute of Science and Technology)
  • 투고 : 2013.10.22
  • 심사 : 2013.11.21
  • 발행 : 2013.12.25

초록

잡음이 있는 환경에서 음악을 들을 경우 잡음의 영향으로 인해 명료한 음악의 청취가 힘들다. 본 논문에서는 잡음 환경에서 오디오 신호를 자동으로 변화시킴으로써 잡음 환경에서의 오디오 청취 경험을 향상시킬 수 있는 방법을 제안한다. 구체적으로, 잡음이 있는 환경에서 밴드 별 오디오 신호의 지각적 크기가 잡음이 없는 경우와 비슷해지도록 오디오 신호를 변화시키는 방법을 제안하였다. 이를 위해 Moore의 라우드니스 지각 모델을 도입하였으며, 기존의 음성 강화를 목적으로 한 논문을 더욱 발전시켜 48kHz로 샘플링된 전대역 신호를 증폭시키는 기법을 제안하였다. 잡음이 심할 때에는 라우드니스를 복원시켜도 명료성이 떨어지므로 이를 위해 라우드니스를 복원하는 데에 그치지 않고 일부러 고주파의 라우드니스를 약간 더 증폭하는 방법도 제안하였다. 실험 결과를 통해 우리는 제안된 알고리즘이 잡음 환경에서의 오디오 청취 경험을 얼마나 향상시킬 수 있는지를 알 수 있었다.

It is hard to listen to the music clearly in the presence of background noise. In this paper, a method that modifies the audio signal automatically to enhance the audio listening experience in adverse environment is proposed. Specifically, the method that amplifies the audio signal so that the perceived loudness of audio signal in each band becomes similar to that of the noiseless signal. The loudness perception model proposed by Moore et. al is utilized. Extending the previous work that is applied to speech reinforcement, the full band signal sampled at 48kHz is manipulated based on the loudness restoration principle. Moreover, based on the observation that the audio clarity is compromised even with loudness restored signal, a modification that intentionally boosts high frequency loudness more than lower band is also proposed. Experimental results showed that the proposed algorithm can enhance the audio listening experience in adverse environment.

키워드

참고문헌

  1. B. C. J. Moore, B. R. Glasberg, and T. Baer, "A model for the prediction of thresholds, loudness, and partial loudness," Journal of Audio Engineering Society, vol. 45, no. 4, pp. 224-240, Apr. 1997.
  2. Y. Ephraim and D. Malah, "Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator," IEEE Trans. Acoustics, Speech, Signal Processing, vol. ASSP-32, no. 6, pp. 1109-1121, Dec. 1984.
  3. 3GPP2 Document C.S0014-0 v1.0, Enhanced Variable Rate Codec (EVRC), Dec. 1999.
  4. M. Tzur (Zibulski) and A. A. Goldin, "Sound equalization in a noisy environment," Audio Engineering Society 110th Convention, Preprint No. 5364, May 2001.
  5. B. Sauert and P. Vary, "Near end listening enhancement: Speech intelligibility improvement in noisy environments," Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, vol. 1, pp. I-493-I-496, 2006.
  6. A. A. Goldin, A. Budkin and S. Kib, "Automatic volume and equalization control in mobile devices," Audio Engineering Society 121th Convention, Preprint No. 6960, Oct. 2006.
  7. Jae-Hun Choi and Joon-Hyuk Chang, "Sound reinforcement based on context awareness for hearing impaired," Journal of The Institute of Electronics Engineers of Korea, vol. 48-SP, no. 5, pp. 109-114, Sep. 2011.
  8. Jae-Hun Choi and Joon-Hyuk Chang, "Robust speech reinforcement based on gain-modification incorporating speech absence probability," Journal of The Institute of Electronics Engineers of Korea, vol. 47-SP, no. 1, pp. 175-182, Jan. 2010.
  9. E. Zwicker and H. Fastl, Psychoacoustics-Facts and Models, Berlin: Springer, 1990.
  10. J. W. Shin and N. S. Kim, "Perceptual reinforcement of speech signal based on partial specific loudness," IEEE Signal Processing Letters, vol. 14, no. 11, pp. 887-890, Nov. 2007. https://doi.org/10.1109/LSP.2007.900222
  11. ITU-T P.800, Methods for Subjective Determination of Transmission Quality, Aug. 1996.