DOI QR코드

DOI QR Code

Study on Lean-Premixed Combustion Characteristics of Dual-Stage Burner

이중 연료 분사구조를 갖는 희박-예혼합 버너의 연소특성 연구

  • Received : 2012.05.15
  • Accepted : 2012.11.22
  • Published : 2013.01.01

Abstract

This study aims to experimentally investigate the combustion characteristics of a lean premixed swirl-stabilized burner with dual-stage fuel injection arrays. The results show that a variation in the fuel distribution to fuel stages 1 (upstream) and 2 (downstream) produces a noticeable change in the NOx and CO emissions. Reducing the confined ratio, defined as the ratio of the nozzle exit diameter to the liner diameter, may reduce NOx and CO emissions owing to reduced combustion loading and longer residence time, respectively. A nozzle exit velocity of 30 m/s shows the optimum characteristics in terms of NOx and CO emissions and flame stability: increasing or decreasing the nozzle exit velocity leads to a degradation in emissions or flame stability, respectively.

본 연구에서는 가스터빈 연소기에 적용하기 위한 예혼합 스월버너의 배기가스 및 화염안정성 최적화를 위하여 버너의 구조변경에 따른 연소특성을 실험적으로 분석하였다. 버너의 연료분사구조에 따른 배기가스 배출 특성을 파악하고자 단일연료분사구조와 이중연료분사구조를 갖는 예혼합 버너의 연소특성을 비교 분석하였으며 이중연료분사구조 적용 시 연료/공기 혼합특성이 향상되어 CO와 NOx의 배출농도가 감소하는 경향을 나타내었다. 또한, 노즐출구와 라이너의 지름 비(confined ratio)에 따른 연소부하 및 배기가스 특성을 분석한 결과 confined ratio 감소 시 연소부하 감소로 인해 NOx 배출농도가 감소되었으며, 체류시간의 증가로 인해 CO의 산화 반응이 증가하여 CO 배출농도가 감소하였다. 노즐분출속도는 30 m/s에서 배기가스특성이 우수하며, 속도 증가(40 m/s) 시 배가스특성이 저하되고 속도 감소(20 m/s) 시 화염안정성이 저하되었다.

Keywords

References

  1. 2011, Commercialization of Cogeneration Plants Using 200kW Micro-Turbine, Planning Report, Ministry of Knowledge Economy.
  2. Lefebvre, A. H., 1983, Gas Turbine Combustion, McGraw-Hill.
  3. Fietelberg, A. S. and Lacey, M. A., 1997, "The GE Rich-Quench-Lean Gas Turbine Combustor," ASME, 97-GT-127.
  4. Griebel, P., Fischer M., Hassa Ch., Magens E., Nannen, H., Winandy, A., Chrystostomou, A., Meier, U. and Stricker, W., 1997, "Experimental Investigation of an Atmospheric Rectangular Rich Quench Lean Combustor Sector for Aeroengines," ASME, 97-GT-146.
  5. Kim, H. S., Lim, A. H., Ahn, K. Y. and Lee, S. M., 2004, "Study on the Combustion Characteristics of a Lean-Premixed Combustor," Journal of Korean Society Combust, Vol. 9, No. 1, pp. 25-31.
  6. Cohen, H., Rogers, G. F. C. and Saravanamutto, H. I. H., 1987, Gas Turbine Theory, 3rd edition, Longman Scientific & Technical, England, pp. 414.
  7. Williams, F. A., 1985, Combustion Theory, 2nd edition, Benjamin & Cuminy Publishing Inc. Menlo Park, Califonia.
  8. Oh, K. S. and Ahn, K. Y., 1997, "A Study on Design Technology of Turbomachinery," Korea Institute of Machinery & Materials Research, UCN 304-521.M.
  9. Oh, K. S. and Ahn, K. Y., 1997, "Development of Aerodynamic Design and Analysis Technology for TurboGenerator and Relevant Fluid Machines (І)," Korea Institute of Machinery & Materials Research.
  10. Ahn, K. Y., Kim, H. S., Bae, J. H. and Cho, E. S., 1998, "An Experimental Study for Preliminary Design of Gas Turbine Combustor," Trans. Korean Soc. Mech. Eng. B, Vol. 22, No. 6, pp. 840-848.
  11. Kim, H. S., Arghode, W. K. and Gupta, A. K., 2009, "Combustion Characteristics of a Lean Premixed LPG-Air Combustor," International Journal of Hydrogen Energy, Vol. 34, Issue 2, pp. 1045-1053. https://doi.org/10.1016/j.ijhydene.2008.10.036
  12. Kim, H. S., Arghode, V. K. and Gupta, A. K., 2009, "Flame Characteristics of Hydrogen- Enriched Methane-Air Premixed Swirling Flames," International Journal of Hydrogen Energy, Vol. 34, Issue 2, pp. 1063-1073. https://doi.org/10.1016/j.ijhydene.2008.10.035
  13. Turns, S. R., 2000, An Introduction to Combustion: Concepts and Applications, 2nd edition, McGraw- Hill, p. 752.

Cited by

  1. Design Methodology of an Annular Combustor for Micro Gas Turbines vol.19, pp.4, 2014, https://doi.org/10.15231/jksc.2014.19.4.021
  2. Formation of Oxy-Fuel MILD Combustion under Different Operating Conditions vol.40, pp.9, 2016, https://doi.org/10.3795/KSME-B.2016.40.9.577