DOI QR코드

DOI QR Code

FAST UNIQUE DECODING OF PLANE AG CODES

  • Lee, Kwankyu (Department of Mathematics and Education, Chosun University)
  • Received : 2013.11.07
  • Accepted : 2013.11.25
  • Published : 2013.12.25

Abstract

An interpolation-based unique decoding algorithm of Algebraic Geometry codes was recently introduced. The algorithm iteratively computes the sent message through a majority voting procedure using the Gr$\ddot{o}$bner bases of interpolation modules. We now combine the main idea of the Guruswami-Sudan list decoding with the algorithm, and thus obtain a hybrid unique decoding algorithm of plane AG codes, significantly improving the decoding speed.

Keywords

References

  1. M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Perseus Books, 1969.
  2. D. Eisenbud, Commutative Algebra with a View toward Algebraic Geometry, Number 150 in GTM, Springer-Verlag, 1995.
  3. K. Lee, Unique decoding of plane AG codes revisited, arXiv, Apr. 2012. arXiv:1204.0052v2.
  4. K. Lee, M. Bras-Amoros, and M. E. O'Sullivan, Unique decoding of plane AG codes via interpolation, IEEE Trans. Inf. Theory, 58(6) (2012), 3941-3950. https://doi.org/10.1109/TIT.2012.2182757
  5. K. Lee and M. E. O'Sullivan, List decoding of Hermitian codes using Grobner bases, Journal of Symbolic Computation, 44 (2009), 1662-1675. https://doi.org/10.1016/j.jsc.2007.12.004
  6. J. C. Rosales and P. A. Garca-Sanchez, Numerical semigroups, volume 20 of Developments in Mathematics, Springer, New York, 2009.
  7. R. M. Roth and G. Ruckenstein, Ecient decoding of Reed-Solomon codes beyond half the minimum distance, IEEE Trans. Inf. Theory, 46(1) (2000), 246-257. https://doi.org/10.1109/18.817522
  8. W. A. Stein et al, Sage Mathematics Software (Version 4.8), The Sage Development Team, 2012. http://www.sagemath.org