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PRIMITIVE/SEIFERT KNOTS WHICH ARE NOT

TWISTED TORUS KNOT POSITION

Sungmo Kang

Abstract. The twisted torus knots and the primitive/Seifert knots
both lie on a genus 2 Heegaard surface of S3. In [5], J. Dean used
the twisted torus knots to provide an abundance of examples of
primitive/Seifert knots. Also he showed that not all twisted torus
knots are primitive/Seifert knots. In this paper, we study the other
inclusion. In other words, it shows that not all primitive/Seifert
knots are twisted torus knot position. In fact, we give infinitely
many primitive/Seifert knots that are not twisted torus knot posi-
tion.

1. Introduction

Two types of knots in S3, the twisted torus knots and the primi-
tive/Seifert knots, both lie on a genus 2 Heegaard surface of S3. In [5],
J. Dean defined primitive/Seifert knots, and to find primitive/Seifert
knots he used the twisted torus knots. Furthermore he gave the criteria
for twisted torus knots to be primitive/Seifert knots. Also he showed
that not all twisted torus knots are primitive/Seifert knots. On the other
hand, in [3] Berge and the author give the complete list of hyperbolic
primitive/Seifert knots in S3. Thus one natural question is whether or
not all hyperbolic primitive/Seifert knots belong to the twisted torus
knots. This paper gives an implication for a negative answer. In other
words, we provide infinitely many primitive/Seifert knots which are not
the twisted torus knot position.
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Figure 1. The (7, 3) torus knot T (7, 3) and 3 parallel
copies 3T (1, 1) of the (1, 1) torus knot.

Since the precise definitions of the twisted torus knots and the primi-
tive/Seifert knots can both be found in [5], we give brief explanation on
how to construct them.

First regarding the twisted torus knots, let T (p, q) be the (p, q)-torus
knot which lies in the boundary of the standardly embedded solid torus
V in S3. Let rT (m,n) be the r parallel copies of T (m,n) which lies in
the boundary of another standardly embedded solid torus V ′ in S3. Let
D be the disk in ∂V so that T (p, q) intersects D in r disjoint parallel
arcs, where 0 ≤ r ≤ p+q, and D′ the disk in ∂V ′ so that rT (m,n) inter-
sects D′ in r disjoint parallel arcs, one for each component of rT (m,n).
See Figure 1. We excise the disks D and D′ from their respective tori
and glue the punctured tori together along their boundaries so that the
orientations of T (p, q) and rT (m,n) align correctly. The resulting one
must result in a knot and is called a twisted torus knot, which is de-
noted by K(p, q, r,m, n). Figure 2 shows K(7, 3, 3, 1, 1). It is obvious
from the construction that the twisted torus knots lie on a standard
genus 2 Heegaard surface of S3. Let K be a simple closed curve in a
genus 2 Heegaard surface Σ of S3. Then we say that K is a twisted torus
knot position if there exists a homeomorphism of S3 sending (Σ,K) to
(F,K ′), where K ′ is a twisted torus knot lying in a standard genus 2
Heegaard surface F of S3.

Now we describe primitive/Seifert knots. If H is a genus two handle-
body and c is an essential simple closed curve in ∂H, H[c] will denote
the 3-manifold obtained by adding a 2-handle to H along c. The curve
c in ∂H is primitive in H if H[c] is a solid torus. We say c is Seifert
in H if H[c] is a Seifert-fibered space and not a solid torus. Note that
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Figure 2. The twisted torus knot K(7, 3, 3, 1, 1).

since H is a genus two handlebody, that c is Seifert in H implies that
H[c] is an orientable Seifert-fibered space over D2 with two exceptional
fibers, or an orientable Seifert-fibered space over the Möbius band with
at most one exceptional fiber.

Suppose K is a simple closed curve in a genus two Heegaard surface
Σ of S3 bounding handlebodies H and H ′. K in Σ is primitive/Seifert
if it is primitive with respect to one of H or H ′, say H ′, and Seifert with
respect to H.

2. Backgrounds on R-R diagrams

R-R diagrams are a type of planar diagram related to Heegaard di-
agrams. These diagrams were originally introduced by Osborne and
Stevens in [6]. They enable us to analyze curves which lie very com-
plicatedly on the boundary of a genus two handlebody. They are par-
ticularly useful for describing embeddings of simple closed curves in the
boundary of a handlebody so that the embedded curves represent certain
conjugacy classes in π1 of the handlebody.

The basics of Heegaard diagrams and R-R diagrams of simple closed
curves in the boundary of a genus two handlebody are well explained in
the paper [1] of Berge. Here, we describe briefly terminologies related
to R-R diagrams and show how to transform simple closed curves in the
boundary of a genus two handlebody into R-R diagrams.

We start with a genus two handlebody H with a complete set of
cutting disks {DA, DB}. Suppose C is a set of pairwise disjoint simple
closed curves in the boundary Σ of H. Figure 3 shows two simple closed
curves in the boundary of a genus two handlebody. Consider two parallel
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Figure 3. Two simple closed curves in the boundary of
a genus two handlebody.

simple closed curves which separate the two cutting disks DA and DB.
These two curves decompose Σ into two once-punctured tori FA and
FB, and one annulus A. These two curves were originally introduced by
Zieschang [7] as belt curves, and the two once-punctured tori FA and
FB are called handles. See Figures 4 and 5 for this decomposition.

With this decomposition of Σ set, we analyze each curve in C in
each component of the decomposition as follows. We may assume after
isotopy each curve c ∈ C is either disjoint from ∂FA∪∂FB, or c is cut by
its intersections with ∂FA ∪∂FB into arcs, each properly embedded and
essential in one of A, FA, FB. A properly embedded essential arc in FA

or FB is called a connection. Two connections in FA or FB are parallel
if they are isotopic in FA or FB via an isotopy keeping their endpoints
in ∂FA or ∂FB. A collection of pairwise disjoint connections on a given
handle can be partitioned into bands of pairwise parallel connections.
Note that since each handle is a once-punctured torus, there can be at
most three nonparallel bands of connections on a given handle. Figure 5
shows that there are three nonparallel bands of connections in FA and
there are two in FB.

In each handle, we merge parallel connections in one band into a
single connection. This also merges the endpoints of connections on the
boundary of each handle. With these endpoints merged in each handle,
now we merge properly embedded essential arcs in A such that if n
parallel arcs in A have the same endpoints in each handle after merging
connections, then we merge these arcs into one edge and label this edge
by n indicating n parallel arcs and call this edge with label n as a band
of width n.
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Figure 4. Belt curves bounding an annulus in a genus
two surface.

Figure 5. An annulus A and two handles FA and FB.

With all of the above information provided, we are ready to transform
simple closed curves in the boundary of a genus two handlebody into R-
R diagrams, which are type of a planar graph in S2. First, we embed
the annulus A in S2 by deleting two disks from S2 as shown in Figure 6.
Next we immerse arc components of curves lying in the two handles FA

and FB into S2 as follows. Since each boundary ofA is also the boundary
of the handles FA and FB, and there are at most three connections after
merger, put the six endpoints of the three connections in each boundary
circle of A and connect two endpoints of a connection by a diameter.
Figure 6 shows this transformation. We put the capital letters A and B
to indicate correspondence to the two handles FA and FB respectively
and we call them as A−handle and B−handle respectively.

We encode the endpoints of each band of connections by integers as
follows. Orient the boundaries of the cutting disks DA and DB and each
simple closed curve in C. The orientation of a simple closed curve gives
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Figure 6. Immersion of curves of C into S2 which be-
comes a corresponding R-R diagram.

the orientation of connections in a handle distinguishing its endpoints as
an initial point and a terminal point. If a connection intersects a cutting
disk s times positively, we label an initial point by s and a terminal point
by −s, and we say the band of connections with endpoints labeled by
s and −s as s-connection or (−s)-connection. Note that the labels of
endpoints satisfy the following conditions:

(1) If s and t are consecutive labels of endpoints of two connections,
then gcd(s, t) = 1.

(2) If s, t, and u are consecutive labels of endpoints of three connec-
tions, then t = s+ u.

By disregarding the boundary circles of FA and FB in Figure 6, we
finally obtain the corresponding R-R diagram. Figure 7 shows the trans-
formation of two curves c1 and c2 in the boundary of a genus two han-
dlebody into R-R diagram.

As mentioned at the beginning in this section, R-R diagram gives
sufficient information about conjugacy classes of the element represented
by c in π1(H). π1(H) is a free group F (A,B) which is generated byA and
B dual to the cutting disks DA and DB respectively. In Figure 7, c1 and
c2 represent the conjugacy classes of AB and A3B2A2B2 respectively in
π1(H).

3. R-R diagrams of twisted torus knots and their properties

In this section, we describe the R-R diagram of twisted torus knots.
From the construction or Figures 1 and 2, a twisted torus knot lies on



Primitive/Seifert knots which are not twisted torus knot position 781

Figure 7. Transformation into R-R diagram.

the boundary of a standardly embedded genus two handlebody H in S3,
which is obtained from two solid tori by gluing the disks D and D′. Let
H ′ be the closure of S3−H, which is also a genus two handlebody, and
Σ the common boundary of H and H ′. Then (Σ;H,H ′) is a standard
genus two Heegaard splitting of S3.

Let Γ be a separating simple closed curve in Σ which bounds in both
H and H ′ (in the construction of twisted torus knots, Γ can be chosen
as the boundary of the disk D or D′). Let {DA, DB} and {DX , DY } be
complete sets of cutting disks of H and H ′ respectively, disjoint from
Γ, with ∂DA and ∂DX on one side of Γ, and ∂DB and ∂DY on the
other side of Γ. See Figure 8. With this setup given, we can make
R-R diagrams of twisted torus knots with respect to both H and H ′.
First, we regard Γ as the belt curve separating the boundary of H (H ′,
respectively) into the two handles A−handle and B−handle (X−handle
and Y−handle, respectively). According to the construction of twisted
torus knots, since the intersection of a twisted torus knot K(p, q, r,m, n)
and the B−handle in H consists of r parallel arcs, there is only one band
of connections on the B−handle. Similarly, there is only one band of
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Figure 8. The A− and B−handles in H and the X−
and Y−handles in H ′.

Figure 9. R-R diagrams of a twisted torus knot
K(p, q, r,m, n) with respect to H(in (a)) and H ′(in (b)).

connections on the Y−handle. Therefore we have the R-R diagram of
twisted torus knots as shown in Figure 9.
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Proposition 3.1. If K is a twisted torus knot which lies on a stan-
dard genus two Heegaard surface Σ of S3 bounding two handlebodies
H and H ′, then there exists a simple closed curve β on Σ which either
bounds a disk, is primitive, or is a proper power in each handlebody.

Proof. In Figure 9(a), the dotted curve β bounds a disk if s = 0, is
primitive if s = 1, and is a proper power if s > 1 in H. Similarly in
Figure 9(b), the curve β bounds a disk, is primitive, or is a proper power
in H ′.

That β is a proper power curve in H means that β is disjoint from a
separating disk in H, does not bound a disk in H, and is not primitive
in H. Equivalently, [β] is conjugate to wn, n ≥ 2, of π1(H), where w is
a free generator of π1(H).

Remark 3.2. If the curve β in Proposition 3.1 bounds a disk in one
of the handlebody, then the twisted torus knot K is a torus knot.

The existence of the curve β in Proposition 3.1 plays a crucial role
in determining if a hyperbolic primitive/Seifert knot is not a twisted
torus knot. In other words, due to Berge [2] the existence of the curve
β enables us to make the following procedure for the determination;

(1) Find all candidates for β which is primitive or a proper power in
H.

(2) Check if β is also primitive or a proper power in H ′. If not, it is
not a twisted torus knot.

(3) Locate the unique cutting disks DA∗ and DX∗ disjoint from β of
H and H ′ respectively.

(4) Check if ∂DA∗ and ∂DX∗ intersect exactly once. If not, it is not a
twisted torus knot.

4. Primitive/Seifert knots which are not twisted torus knot
position

In this section, we give an infinite family of primitive/Seifert knots
which are not a twisted torus knot position. According to the procedure,
the first two steps are to find all candidates for β which is primitive or a
proper power in both H and H ′. The following theorem due to Cohen,
Metzler, and Zimmerman provides the necessary condition for a simple
closed curve being a primitive or a proper power curve in a genus two
handlebody once one knows a cyclically reduced word of the curve in a
free group of rank two F (A,B), which is π1(H).
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Figure 10. The (7, 3)-torus knot and one unknotting
tunnel t which lie in the boundary of a standardly em-
bedded solid torus V in S3.

Theorem 4.1. ([4]) Suppose a cyclic conjugate of

W = An1Bm1 · · ·AnpBmp

is a member of a basis of F (A,B) or a proper power of a member of a
basis of F (A,B), where p ≥ 1 and each indicated exponent is nonzero.
Then, after perhaps replacing A by A−1 or B by B−1, there exists e > 0
such that:

n1 = · · · = np = 1, and {m1, . . . ,mp} ⊆ {e, e+ 1},
or

{n1, . . . , np} ⊆ {e, e+ 1}, and m1 = · · · = mp = 1.

We construct an infinite family of primtivie/Seifert knots as follows.
Let κ be a (h, k)-torus knot in the boundary of a standardly embedded
torus V in S3 where h, k > 1, and t be an unknotting tunnel of κ as
shown in Figure 10. Let W = S3 − V and T = V ∩W . Also we let
H ′ = N(κ ∪ t), H = S3 −H ′ and Σ = H ∩ H ′. Then the triple of
(Σ;H,H ′) is a genus 2 Heegaard splitting of S3. With this Heegaard
splitting given, consider the curves α0, τ1, and τ2 in ∂H ′(= Σ) as shown
in Figure 11. Here H ′ has been cut open along two disks to yield a 3-cell
in which the disk DM of H ′ is dual to the unknotting tunnel t of κ. Let
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Figure 11. An infinite family of primitve/Seifert knots
K in the genus 2 Heegaard splitting (Σ, H,H ′) of S3,

where K = α0T(τJ11 , τJ22 ) with J1, J2 > 1 and J1 6= J2
and J1 6= J2 + 1. Here the handlebody H ′ is the closure
of a regular neighborhood of an (h, k) torus knot κ with
h, k > 1 and an unknotting tunnel t of κ embedded in
the boundary T of a standardly embedded solid torus V
in S3 as in Figure 10, and H = S3 −H ′.

DR be the meridian of κ, which appears as in Figure 11. Note that DM

and DR form a complete set of cutting disks of H ′. Let M and R be the
boundaries of DM and DR respectively with the orientation given as in
Figure 11. Finally we let K = α0T(τJ11 , τJ22 ) with J1, J2 > 1, J1 6= J2
and J1 6= J2 + 1, i.e. K is the curve obtained from α0 twisted about τ1
and τ2 J1 and J2 times respectively.

In the following theorem, we will show that the curve K is primitive
in H ′ and Seifert in H so that K is a primitive/Seifert knot in S3.

Theorem 4.2. The knot K described in Figure 11 is a hyperbolic
primitive/Seifert knot in S3.

Proof. It follows from Figure 11 that since K intersects DM in a
single point, K is primitive in H ′. In order to show that K is Seifert in
H, we use R-R diagram of K with respect to H.

To find R-R diagram ofK, we need to determine a complete set of cut-
ting disks {DA, DB} of H for the R-R diagram. Let A = T −N(κ), D′ =

A ∩N(t) and D = A−D′. Note that ∂A consists of two copies of an
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Figure 12. Isotopy on A.

Figure 13. Local picture near D.

hk-curve on ∂N(κ), and t ⊂ D′. To find a complete set of cutting disks
of H, we perform an isotopy on A which switches the positions of D′

and D. See Figure 12 for the isotopy performed. Figure 13 shows M
and R after the isotopy. Here M is pushed onto ∂N(κ).

We consider V ∪TW as V ′∪T×[−1
2 ,

1
2 ]∪W ′, where V ′ andW ′ are solid

tori inside V and W respectively such that they have the same cores.
Then it follows that H ∼= V ′ ∪D × [−1

2 ,
1
2 ] ∪W ′, where D = D × {0}.

Let DV ′ and DW ′ be meridians of V ′ and W ′, which are induced from
the meridians DV and DW of V and W respectively. See Figure 14.
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Figure 14. Meridians DA and DB in V ′ and W ′ respectively.

DV ′ and DW ′ form a complete set of cutting disks of H and thus we
take (DV ′ , DW ′) as (DA, DB) of H. Now we can consider R-R diagram
where A and B–handles are associated with the two once-punctured tori
which are created by cutting ∂H along the separating curve ∂D and the
labels on connections on both handles are induced from ∂DA and ∂DB

with the orientation given as in Figure 14.
Now it is easy to find corresponding R-R diagrams of the curves

α0,M,R, τ1, and τ2. First for M , since M intersects DA h times and
then DB k times, M has exactly the same R-R diagram as in Figure 15.
Similarly, R intersects DA h′ times and then DB k′ times for some
positive integers h′ and k′ with 0 < h′ < h and 0 < k′ < k, which
satisfy the equation hk′ − h′k = 1. Thus, R has R-R diagram as in
Figure 15. For the curves τ1 and τ2, since they do not intersect the
separating disk D of H, and intersect the cutting disks DA and DB h
and k times respectively, their R-R diagrams appear as in Figure 15. By
figuring out the intersections of α0 with the other curves M,R, τ1, and
τ2 we can obtain R-R diagram of α0 as in Figure 15.

Let π1(H) = 〈A,B〉 and π1(H
′) = 〈X,Y 〉, where A and B are dual

to the cutting disks DA and DB respectively, and X and Y are dual to
the cutting disks DM and DR respectively. From the R-R diagram in
Figure 15 one has, in π1(H) and π1(H

′) respectively:

K = A(2J1−1)h+2h′BJ2k+k′ ,

K = XY −2J1+J2+1,

which shows that K is Seifert in H by Lemma 2.2 in [5] and primitive
in H ′. Thus K represents primitive/Seifert knots in S3. Furthermore,
by [3] these knots are hyperbolic unless J1 = J2 or J1 = J2 + 1.
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Figure 15. The R-R diagrams of the curves
α0,M,R, τ1, and τ2.

Figure 16. An alternative diagram of α and M ob-
tained by performing the twists about τ1 and τ2 in Fig-
ure 15.

Theorem 4.3. The knot K described in Figure 11 are not a twisted
torus knot position.

Proof. After applying for the twists about the curves τ1 and τ2 J1
and J2 times respectively, we obtain an alternative R-R diagram with the
form of Figure 16, where theA−handle contains the bands of connections
labeled by h′ + J1h, 2h

′ + (2J1 − 1)h, h′ + (J1 − 1)h, and the B−handle
contains the bands of connections labeled by k′ + J2k, k.

Now we apply for the procedure given at the last part in Section 3.
First, we try to find a primitive or proper power curve β disjoint from
K in H. If β has connections on both A− and B−hanldes, then The-
orem 4.1 implies that one of the labels of connections of β must be 1.
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However, we will show that none of the labels of the possible band of
connections of β is 1. In the A−handle, h′ + J1h, 2h

′ + (2J1 − 1)h, and
h′ + J1h+ n(2h′ + (2J1 − 1)h), where n ∈ Z, are possible labels, and in
the B−handle k, k′+J2k and k+m(k′+J2k), where m ∈ Z, are possible
labels for β. Since 0 < h′ < h, 0 < k′ < k, and J1, J2 > 1, none of these
labels can be equal to 1.

Since there are no bands of connections labeled by 1 on both handles,
only candidates of a primitive or proper power β disjoint from K are the
two regular fiber curves β1 and β2 as shown in Figure 16. Algebraically,
in π1(H) β1 and β2 are A2h′+(2J1−1)h and Bk′+J2k respectively.

Next, we need to check if β1 and β2 are primitive or a proper power in
H ′. However it follows from Figures 15 and 16 that β1 = Y −J1XY 1−J1X
and β2 = X−1Y J2 . Thus they are primitive in H ′.

According to the procedure, next test is to locate the unique cutting
disks of H and H ′ disjoint from βi, i = 1, 2, and check if the boundaries
of the two unique cutting disks intersect exactly in a single point.

For the curve β1, it follows immediately from the R-R diagram that
the cutting disk DB in H is disjoint from β1 and thus is the unique
cutting disk in H disjoint from β1. In order to find the unique cutting
disk in H ′, since β1 = Y −J1XY 1−J1X, we perform change of cutting
disks twice, the first of which induces the automorphism X 7→ Y J1X
and the second Y 7→ Y X−2. Then after performing, β1 = Y . So there
are a set of cutting disks of H ′, one of which is dual to β1 = Y and the
other, say DX∗ , is the unique cutting disk in H ′ disjoint form β1.

To see how many times ∂DB intersects ∂DX∗ , we need to figure out
to which element in H1(H

′) = 〈Y,X∗〉 ∂DB is carried under the changes
of cutting disks performed above. The following explains this;

∂DB = kX + k′Y

X 7→J1Y+X−−−−−−−−−−−→ k(J1Y +X) + k′Y = (kJ1 + k′)Y + kX

Y 7→−2X+Y−−−−−−−−−−−→ (kJ1 + k′)(−2X∗ + Y ) + kX∗

= −((2J1 − 1)k + 2k′)X∗ + (kJ1 + k′)Y.

Therefore ∂DB intersects ∂DX∗ ((2J1−1)k+2k′) times, which is greater
than 1.

For the curve β2, the similar argument applies. The cutting disk DA

in H is disjoint from β2 and thus is the unique cutting disk in H disjoint
from β2. In order to find the unique cutting disk in H ′, we perform
change of cutting disks inducing the automorphism X−1 7→ X−1Y −J2 .
Then after performing, β2 = X−1 and there are a set of cutting disks
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of H ′, one of which is dual to β2 = X−1 and the other, say DY ∗ , is the
unique cutting disk in H ′ disjoint form β2.

The following shows that ∂DA intersects ∂DY ∗ (J2h+h′) times, which
is greater than 1.

∂DA = hX + h′Y

X 7→J2Y+X−−−−−−−−−−−→ h(J2Y
∗ +X) + h′Y ∗

= hX + (J2h+ h′)Y ∗.

This completes the proof.

From Theorems 4.2 and 4.3, we have the following.

Corollary 4.4. There exists an infinite family of primitive/Seifert
knots which are not a twisted torus knot position.

Theorem 4.3 shows that the knot K described in Figure 11 are not a
twisted torus knot position. However it does not imply that the knot K
described in Figure 11 are not a twisted torus knot because they might
lie in a different genus 2 Heegaard splitting of S3 which is a twisted torus
knot position. Thus it is worth to work on the following question whose
answer is expected be affirmative.

Question: Are the knot K described in Figure 11 not a twisted torus
knot?
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