References
- W. N. Bailey, Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 32, Stechert-Hafner, New York, 1964.
-
R. C. Bhatt, Another proof of Watson's theorem for summing
$_{3}F_{2}$ (1), J. London Math. Soc. 40 (1965), 47-48. -
J. Choi, A. K. Rathie and Purnima, A Note on Gauss's Second Summation Theorem for the Series
$_{2}F_{1}$ ($\frac{1}{2}$ ), Commun. Korean Math. Soc. 22(4) (2007), 509-512. https://doi.org/10.4134/CKMS.2007.22.4.509 - A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral Transforms, Vol. II, McGraw-Hill Book Company, New York, Toronto and London, 1954.
- T. M. MacRobert, Functions of Complex Variables, 5th edition, Macmillan, London, 1962.
- E. D. Rainville, Special Functions, Macmillan, New York, 1960.
- M. A. Rakha, A new proof of the classical Watson's summation theorem, Appl. Math. E-Notes 11 (2011), 278-282.
-
A. K. Rathie and R. B. Paris, A new proof of Watson's theorem for the series
$_{3}F_{2}$ (1), App. Math. Sci. 3(4) (2009), 161-164. - M. Raussen and C. Skau, Interview with Michael Atiya and Isadore Singer, Notices Amer. Math. Soc. 52 (2005), 225-233.
- H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London, and New York (2012).
- G. N. Watson, A note on generalized hypergeometric series, Proc. London Math. Soc. 2(23) (1925), 13-15.
- F. J. Whipple, A group of generalized hypergeometric series; relations between 120 allied series of type F(a, b, c; e, f), Proc. London Math. Soc. 2(23) (1925), 104-114.