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CUBIC IDEALS IN SEMIGROUPS

Young Bae Jun and Asghar Khan∗

Abstract. Operational properties of cubic sets are first investi-
gated. The notion of cubic subsemigroups and cubic left (resp.
right) ideals are introduced, and several properties are investigated.
Relations between cubic subsemigroups and cubic left (resp. right)
ideals are discussed. Characterizations of cubic left (resp. right)
ideals are considered, and how the images or inverse images of cu-
bic subsemigroups and cubic left (resp. right) ideals become cubic
subsemigroups and cubic left (resp. right) ideals, respectively, are
studied.

1. Introduction

Fuzzy sets are initiated by Zadeh [13]. In [14], Zadeh made an ex-
tension of the concept of a fuzzy set by an interval-valued fuzzy set,
i.e., a fuzzy set with an interval-valued membership function. In tra-
ditional fuzzy logic, to represent, e.g., the expert’s degree of certainty
in different statements, numbers from the interval [0, 1] are used. It
is often difficult for an expert to exactly quantify his or her certainty;
therefore, instead of a real number, it is more adequate to represent this
degree of certainty by an interval or even by a fuzzy set. In the first
case, we get an interval-valued fuzzy set. In the second case, we get
a second-order fuzzy set. Interval-valued fuzzy sets have been actively
used in real-life applications. For example, Sambuc [9] in Medical diag-
nosis in thyroidian pathology, Kohout [8] also in Medicine, in a system
CLINAID, Gorzalczany [10] in Approximate reasoning, Turksen [10, 11]
in Interval-valued logic, in preferences modelling [12], etc. These works
and others show the importance of these sets. Fuzzy sets deal with pos-
sibilistic uncertainty, connected with imprecision of states, perceptions
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and preferences. Using a fuzzy set and an interval-valued fuzzy set, Jun
et al. [5] introduced a new notion, called a cubic set, and investigated
several properties. Cubic set theory is applied to BCK/BCI-algebras
(see [3, 4, 6, 7]) and Γ-semihypergroups (see [1]).

In this paper, we apply cubic sets to semigroups. We first investigates
operational properties of cubic sets. We introduce the notion of cubic
subsemigroups and cubic left (resp. right) ideals, and investigate several
properties. We discuss relations between cubic subsemigroups and cubic
left (resp. right) ideals. We consider characterizations of cubic left
(resp. right) ideals, and study how the images or inverse images of
cubic subsemigroups and cubic left (resp. right) ideals become cubic
subsemigroups and cubic left (resp. right) ideals, respectively.

2. Preliminaries

A nonempty set S together with an associative binary operation “·”
is called a semigroup. A semigroup S is said to be left (resp. right) zero
if xy = x (resp. xy = y) for all x, y ∈ S. A semigroup S is said to be
regular if for each element a ∈ S, there exists an element x in S such
that a = axa. A nonempty subset Q of a semigroup S is called a

• subsemigroup of S if xy ∈ Q for all x, y ∈ Q,
• left (resp. right) ideal of S if xa ∈ Q (resp. ax ∈ Q) for all x ∈ S

and a ∈ Q.

Let I be a closed unit interval, i.e., I = [0, 1]. By an interval number
we mean a closed subinterval a = [a−, a+] of I, where 0 ≤ a− ≤ a+ ≤ 1.
Denote by D[0, 1] the set of all interval numbers. Let us define what are
known as refined minimum (briefly, rmin) and refined maximum (briefly,
rmax) of two elements in D[0, 1]. We also define the symbols “�”, “�”,
“=” in case of two elements in D[0, 1]. Consider two interval numbers
a1 :=

[
a−1 , a

+
1

]
and a2 :=

[
a−2 , a

+
2

]
. Then

rmin {a1, a2} =
[
min

{
a−1 , a

−
2

}
,min

{
a+

1 , a
+
2

}]
,

rmax {a1, a2} =
[
max

{
a−1 , a

−
2

}
,max

{
a+

1 , a
+
2

}]
,

a1 � a2 if and only if a−1 ≥ a
−
2 and a+

1 ≥ a
+
2 ,

and similarly we may have a1 � a2 and a1 = a2. To say a1 � a2 (resp.
a1 ≺ a2) we mean a1 � a2 and a1 6= a2 (resp. a1 � a2 and a1 6= a2). Let
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ai ∈ D[0, 1] where i ∈ Λ. We define

rinf
i∈Λ

ai =

[
inf
i∈Λ

a−i , inf
i∈Λ

a+
i

]
and rsup

i∈Λ
ai =

[
sup
i∈Λ

a−i , sup
i∈Λ

a+
i

]
.

An interval-valued fuzzy set (briefly, IVF set) µ̃A defined on a nonempty
set X is given by

µ̃A :=
{(
x,
[
µ−A(x), µ+

A(x)
])
| x ∈ X

}
,

which is briefly denoted by µ̃A =
[
µ−A, µ

+
A

]
where µ−A and µ+

A are two

fuzzy sets in X such that µ−A(x) ≤ µ+
A(x) for all x ∈ X. For any IVF

set µ̃A on X and x ∈ X, µ̃A(x) = [µ−A(x), µ+
A(x)] is called the degree

of membership of an element x to µ̃A, in which µ−A(x) and µ+
A(x) are

refereed to as the lower and upper degrees, respectively, of membership
of x to µ̃A.

3. Operational properties of cubic sets

Definition 3.1 ([3]). Let X be a nonempty set. A cubic set A in
X is a structure

A = {〈x, µ̃A(x), fA(x)〉 : x ∈ X}

which is briefly denoted by A = 〈µ̃A, f〉 where µ̃A =
[
µ−A, µ

+
A

]
is an IVF

set in X and f is a fuzzy set in X. In this case, we will use

A (x) = 〈µ̃A(x), fA(x)〉 =
〈
[µ−A(x), µ+

A(x)], fA(x)
〉

for all x ∈ X.

For any non-empty subset G of a set X, the characteristic cubic set
of G in X is defined to be a structure

χG = {〈x, µ̃χG(x), fχG(x)〉 : x ∈ X}

which is briefly denoted by χG = 〈µ̃χG , fχG〉 where

µ̃χG(x) =

{
[1,1] if x ∈ G,
[0,0] otherwise,

fχG(x) =

{
0 if x ∈ G,
1 otherwise,

The whole cubic set S in a semigroup S is defined to be a structure

S =
{〈
x, 1̃S(x), 0S(x)

〉
: x ∈ S

}
with 1̃S(x) = [1, 1] and 0S(x) = 0 for all x ∈ X. It will be briefly denoted
by S = 〈1̃S , 0S〉.
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For two cubic sets A = 〈µ̃A, fA〉 and B = 〈µ̃B, fB〉 in a semigroup
S, we define

A v B ⇐⇒ µ̃A � µ̃B, fA ≥ fB

and the cubic product of A = 〈µ̃A, fA〉 and B = 〈µ̃B, fB〉 is defined to
be a cubic set

A c©B = {〈x, (µ̃A◦̃µ̃B)(x), (fA ◦ fB)(x)〉 : x ∈ S}

which is briefly denoted by A c©B = 〈µ̃A◦̃µ̃B, fA ◦ fB〉 where µ̃A◦̃µ̃B
and fA ◦ fB are defined as follows, respectively:

(µ̃A◦̃µ̃B) (x) =

{
rsup
x=yz

[rmin {µ̃A(y), µ̃B(z)}] if x = yz for some y, z ∈ S,

[0,0] otherwise,

and

(fA ◦ fB) (x) =

{ ∧
x=yz

max {fA(y), fB(z)} if x = yz for some y, z ∈ S,

1 otherwise,

for all x ∈ S. We also define the cap and union of two cubic sets as
follows. Let A and B be two cubic sets in X. The intersection of A
and B, denoted by A uB, is the cubic set

A uB = 〈µ̃A∩̃µ̃B, fA ∨ fB〉

where (µ̃A∩̃µ̃B) (x) = rmin {µ̃A(x), µ̃B(x)} and (fA ∨ fB) (x) = max
{fA(x) , fB(x)} .

The union of A and B, denoted by A tB, is the cubic set

A tB = 〈µ̃A∪̃µ̃B, fA ∧ fB〉

where (µ̃A∪̃µ̃B) (x) = rmax {µ̃A(x), µ̃B(x)} and (fA ∧ fB) (x) = min
{fA(x) , fB(x)} .

Proposition 3.2. For any cubic sets A = 〈µ̃A, fA〉, B = 〈µ̃B, fB〉
and C = 〈µ̃C , fC〉 in a semigroup S, we have

(1) A t (B u C ) = (A tB) u (A t C ),
(2) A u (B t C ) = (A uB) t (A u C ),
(3) A c©(B t C ) = (A c©B) t (A c©C ),
(4) A c©(B u C ) v (A c©B) u (A c©C ).

Proof. (1) and (2) are straightforward.
(3) Let x be any element of S. If x is not expressed as x = yz, then

(µ̃A◦̃(µ̃B∪̃µ̃C)) (x) = [0, 0] = ((µ̃A◦̃µ̃B)∪̃(µ̃A◦̃(µ̃C)) (x)
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and

(fA◦(fB ∧ fC)) (x) = 1 = ((fA◦fB) ∧ (fA◦fC)) (x).

Therefore A c©(BtC ) = (A c©B)t(A c©C ). Assume that x is expressed
as x = yz. Then

(µ̃A◦̃(µ̃B∪̃µ̃C)) (x) = rsup
x=yz

[rmin{µ̃A(y), (µ̃B∪̃µ̃C)(z)}]

= rsup
x=yz

[rmin{µ̃A(y), rmax{µ̃B(z), µ̃C(z)}}]

= rsup
x=yz

[rmax{rmin{µ̃A(y), µ̃B(z)}, rmin{µ̃A(y), µ̃C(z)}}]

= rmax

{
rsup
x=yz

[rmin{µ̃A(y), µ̃B(z)}, rmin{µ̃A(y), µ̃C(z)}]
}

= ((µ̃A◦̃µ̃B)∪̃(µ̃A◦̃µ̃C))(x),

and

(fA ◦ (fB ∧ fC)) (x) =
∧

x=yz

max {fA(y), (fB ∧ fC)(z)}

=
∧

x=yz

max {fA(y),min{fB(z), fC(z)}}

=
∧

x=yz

min {max{fA(y), fB(z)},max{fA(y), fC(z)}}

= min

{ ∧
x=yz

max{fA(y), fB(z)},
∧

x=yz

max{fA(y), fC(z)}

}
= ((fA ◦ fB) ∧ (f ◦ fC)) (x).

Hence (3) holds.
(4) Let x ∈ S. If x is not expressed as x = yz, then it is clear. Assume

that there exist y, z ∈ S such that x = yz. Then

(µ̃A◦̃(µ̃B∩̃µ̃C))(x) = rsup
x=yz

[rmin{µ̃A(y), (µ̃B∩̃µ̃C)(z)}]

= rsup
x=yz

[rmin{µ̃A(y), rmin{µ̃B(z), µ̃C(z)}}]

= rsup
x=yz

[rmax{rmin{µ̃A(y), µ̃B(z)}, rmin{µ̃A(y), µ̃C(z)}}]

� rmin

{
rsup
x=yz

[rmin{µ̃A(y), µ̃B(z)}], rsup
x=yz

[rmin{µ̃A(y), µ̃C(z)}]
}

= ((µ̃A◦̃µ̃B)∩̃(µ̃A◦̃µ̃C))(x),

and
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(fA ◦ (fB ∨ fC)) (x) =
∧

x=yz

max {fA(y), (fB ∨ fC)(z)}

=
∧

x=yz

max {fA(y),max{fB(z), fC(z)}}

=
∧

x=yz

max {max{fA(y), fB(z)},max{fA(y), fC(z)}}

≥ max

{ ∧
x=yz

max{fA(y), fB(z)},
∧

x=yz

max{fA(y), fC(z)}

}
= ((fA ◦ fB) ∨ (f ◦ fC)) (x).

Hence (4) holds.

Proposition 3.3. For any cubic sets A = 〈µ̃A, fA〉, B = 〈µ̃B, fB〉
and C = 〈µ̃C , fC〉 in a semigroup S, if A v B, then A c©C v B c©C
and C c©A v C c©B.

Proof. Straightforward.

Proposition 3.4. For non-empty subsets G and H of a semigroup
S, we have

(1) χG c©χH = χGH , i.e., 〈µ̃χG ◦̃µ̃χH , fχG ◦ fχH 〉 = 〈µ̃χGH , fχGH 〉 ,
(2) χG u χH = χG∩H , i.e., 〈µ̃χG∩̃µ̃χH , fχG ∨ fχH 〉 = 〈µ̃χG∩H , fχG∩H 〉 ,
(3) χG t χH = χG∪H , i.e., 〈µ̃χG∪̃µ̃χH , fχG ∧ fχH 〉 = 〈µ̃χG∪H , fχG∪H 〉 .

Proof. (1) Let a ∈ S. If a ∈ GH, then µ̃χGH (a) = [1, 1], fχGH (a) = 0
and a = bc for some b ∈ G and c ∈ H. Thus

(µ̃χG ◦̃µ̃χH ) (a) = rsup
a=xy

[rmin {µ̃χG(x), µ̃χH (y)}]

� rmin {µ̃χG(b), µ̃χH (c)}
= [1, 1]

and

(fχG◦fχH ) (a) =
∧
a=xy

[max {fχG(x), fχH (y)}]

≤ max {fχG(b), fχH (c)} .
= 0

It follows that (µ̃χG ◦̃µ̃χH ) (a) = [1, 1] and (fχG◦fχH ) (a) = 0. Therefore

〈µ̃χG ◦̃µ̃χH , fχG ◦ fχH 〉 = 〈µ̃χGH , fχGH 〉 ,



Cubic ideals in semigroups 613

that is, χG c©χH = χGH . Assume that a /∈ GH. Then µ̃χGH (a) = [0, 0]
and fχGH (a) = 1. Let y, z ∈ S be such that a = yz. Then we know that
y /∈ G or z /∈ H. Assume that y /∈ G. Then

(µ̃χG ◦̃µ̃χH ) (a) = rsup
a=yz

[rmin {µ̃χG(y), µ̃χH (z)}]

= rsup
a=yz

[rmin {[0, 0], µ̃χH (z)}]

= [0, 0] = µ̃χGH (a)

and

(fχG◦fχH ) (a) =
∧
a=yz

[max {fχG(y), fχH (z)}]

=
∧
a=yz

[max {1, fχH (z)}]

= 1 = fχGH (a).

Similarly, if z /∈ H, then (µ̃χG ◦̃µ̃χH ) (a) = [0, 0] = µ̃χGH (a) and (fχG◦fχH )
(a) = 1 = fχGH (a). Therefore χG c©χH = χGH .

(2) and (3) are straightforward.

4. Cubic subsemigroups and ideals

Definition 4.1. A cubic set A = 〈µ̃A, fA〉 in a semigroup S is called
a cubic subsemigroup of S if it satisfies:

(∀x, y ∈ S)

(
µ̃A(xy) � rmin {µ̃A(x), µ̃A(y)} ,
fA(xy) ≤ max {fA(x), fA(y)}

)
.(4.1)

Example 4.2. Consider a semigroup S = {a, b, c, d, e, f} with the
following Cayley table (see Table 1).

Table 1. ·-multiplication

· a b c d e f
a d d d d d a
b e e e e e b
c d d d d e c
d d d d d d d
e e e e e e e
f d d d d d f

Define a cubic set A = 〈µ̃A, fA〉 in S as follows:
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S µ̃A(x) fA(x)

a [0.5, 0.7] 0.6
b [0.3, 0.5] 0.7
c [0.2, 0.4] 0.7
d [0.6, 0.8] 0.3
e [0.4, 0.6] 0.4
f [0, 0] 0.8

Then A = 〈µ̃A, fA〉 is a cubic subsemigroup of S.

Theorem 4.3. A cubic set A = 〈µ̃A, fA〉 in a semigroup S is a cubic
subsemigroup of S if and only if A c©A v A .

Proof. Straightforward.

Definition 4.4. A cubic set A = 〈µ̃A, fA〉 in a semigroup S is called
a left cubic ideal of S if it satisfies:

(∀a, b ∈ S) (µ̃A(ab) � µ̃A(b), fA(ab) ≤ fA(b)) .(4.2)

Similarly, we say that a cubic set A = 〈µ̃A, fA〉 in a semigroup S is
a right cubic ideal of S if A = 〈µ̃A, fA〉 satisfies the following condition:

(∀a, b ∈ S) (µ̃A(ab) � µ̃A(a), fA(ab) ≤ fA(a)) .(4.3)

By a (two-sided) cubic ideal we mean a left and right cubic ideal.

Example 4.5. Consider a semigroup S = {a, b, c, d, e} with the fol-
lowing Cayley table (see Table 2).

Table 2. ·-multiplication

· a b c d e
a a a a a a
b a a a a a
c a a c c e
d a a c d e
e a a c c e

Define a cubic set A = 〈µ̃A, fA〉 in S as follows:



Cubic ideals in semigroups 615

S µ̃A(x) fA(x)

a [0.6, 0.8] 0.1
b [0, 0.2] 0.7
c [0.2, 0.4] 0.2
d [0.1, 0.3] 0.6
e [0.4, 0.6] 0.4

It is easy to verify that A = 〈µ̃A, fA〉 is a cubic ideal of S.

Obviously, every left (resp. right) cubic ideal is a cubic subsemigroup.
But the converse may not be true as seen in the following example.

Table 3. ·-multiplication

· 0 a b c
0 0 0 0 0
a 0 0 0 0
b 0 0 0 a
c 0 0 a b

Example 4.6. Consider a semigroup S = {0, a, b, c} with the Cayley
table (see Table 3). Define a cubic set A = 〈µ̃A, fA〉 in S as follows:

S µ̃A(x) fA(x)

0 [0.5, 0.8] 0.2
a [0.3, 0.6] 0.6
b [0.5, 0.8] 0.4
c [0.2, 0.4] 0.6

It is easy to verify that A = 〈µ̃A, fA〉 is a cubic subsemigroup of S,
but it is not a left cubic ideal of S since µ̃A(cb) = µ̃A(a) = [0.3, 0.6] �
[0.5, 0.8] = µ̃A(b) and/or fA(cb) = fA(a) = 0.6 > 0.4 = fA(b).

Theorem 4.7. For a cubic set A = 〈µ̃A, fA〉 in a semigroup S, the
following are equivalent:

(1) A = 〈µ̃A, fA〉 is a left cubic ideal of S.
(2) S c©A v A .

Proof. Assume that A = 〈µ̃A, fA〉 is a left cubic ideal of S. Let a ∈ S.
If (S c©A ) (a) = 〈[0, 0], 1〉 , then it is clear that S c©A v A . Otherwise,
there exists x, y ∈ S such that a = xy. Since A = 〈µ̃A, fA〉 is a left cubic
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ideal of S, we have(
1̃S ◦̃µ̃A

)
(a) = rsup

a=xy

[
rmin

{
1̃S(x), µ̃A(y)

}]
� rsup

a=xy
[rmin {[1, 1], µ̃A(xy)}]

= rsup µ̃A(a) = µ̃A(a)

and

(0S◦f) (a) =
∧
a=xy

max {0S(x), fA(y)}

≥
∧
a=xy

fA(xy) =
∧
fA(a) = fA(a).

Therefore S c©A v A .
Conversely, suppose that S c©A v A . For any elements x and y of

S, let a = xy. Then

µ̃A(xy) = µ̃A(a) �
(
1̃S ◦̃µ̃A

)
(a)

= rsup
a=bc

[
rmin

{
1̃S(b), µ̃A(c)

}]
� rmin

{
1̃S(x), µ̃A(y)

}
= µ̃A(y)

and

fA(xy) = fA(a) ≤ (0S ◦ f) (a)

=
∧
a=bc

max {0S(b), fA(c)}

≤ max {0S(x), fA(y)} = fA(y).

Hence A = 〈µ̃A, fA〉 is a left cubic ideal of S.

Similarly, we can induces the following theorem.

Theorem 4.8. For a cubic set A = 〈µ̃A, fA〉 in a semigroup S, the
following are equivalent:

(1) A = 〈µ̃A, fA〉 is a right cubic ideal of S.
(2) A c©S v A .

Theorem 4.9. If A = 〈µ̃A, fA〉 is a cubic set in a semigroup S, then
S c©A (resp. A c©S) is a left (resp. right) cubic ideal of S.

Proof. Since S c© (S c©A ) = (S c©S) c©A v S c©A , it follows from
Theorem 4.7 that S c©A is a left cubic ideal of S. Similarly, A c©S is a
right cubic ideal of S.
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Now we will consider conditions for a left (resp. right) cubic ideal to
be constant.

Proposition 4.10. Let U be a left zero subsemigroup of a semigroup
S. If A = 〈µ̃A, fA〉 is a left cubic ideal of S, then A (x) = A (y) for all
x, y ∈ U.

Proof. Let x, y ∈ U. Then xy = x and yx = y. Thus

µ̃A(x) = µ̃A(xy) � µ̃A(y) = µ̃A(yx) � µ̃A(x)

and

fA(x) = fA(xy) ≤ fA(y) = fA(yx) ≤ fA(x).

Therefore A (x) = A (y) for all x, y ∈ U.

Similarly, we have the following proposition.

Proposition 4.11. Let U be a right zero subsemigroup of a semi-
group S. If A = 〈µ̃A, fA〉 is a right cubic ideal of S, then A (x) = A (y)
for all x, y ∈ U.

Theorem 4.12. Let A = 〈µ̃A, fA〉 be a left cubic ideal of a semi-
group S. If the set of all idempotent elements of S forms a left zero
subsemigroup of S, then A (u) = A (v) for all idempotents elements u
and v of S.

Proof. Let Idm(S) be the set of all idempotent elements of S and
assume that Idm(S) is a left zero subsemigroup of S. For any u, v ∈
Idm(S), we have uv = u and vu = v. Hence

µ̃A(u) = µ̃A(uv) � µ̃A(v) = µ̃A(vu) � µ̃A(u)

and

fA(u) = fA(uv) ≤ fA(v) = fA(vu) ≤ fA(u).

Therefore A (x) = A (y) for all u, v ∈ Idm(S).

Similarly, we have the following theorem.

Theorem 4.13. Let A = 〈µ̃A, fA〉 be a right cubic ideal of a semi-
group S. If the set of all idempotent elements of S forms a right zero
subsemigroup of S, then A (u) = A (v) for all idempotents elements u
and v of S.

Theorem 4.14. Let S be a semigroup. Then the following properties
hold.
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(1) The intersection of two cubic subsemigroups of S is a cubic sub-
semigroup of S.

(2) The intersection of two left (resp. right) cubic ideals of S is a left
(resp. right) cubic ideal of S.

Proof. (1) Let A = 〈µ̃A, fA〉 and B = 〈µ̃B, fB〉 be cubic subsemi-
groups of S. Let x and y be any elements of S. Then

(µ̃A∩̃µ̃B) (xy) = rmin {µ̃A(xy), µ̃B(xy)}
� rmin {rmin{µ̃A(x), µ̃A(y)}, rmin{µ̃B(x), µ̃B(y)}}
= rmin {rmin{µ̃A(x), µ̃B(x)}, rmin{µ̃A(y), µ̃B(y)}}
= rmin {(µ̃A∩̃µ̃B) (x), (µ̃A∩̃µ̃B) (y)}

and

(fA ∨ fB) (xy) = max{fA(xy), fB(xy)}
≤ max{max{fA(x), fA(y)},max{fB(x), fB(y)}}
= max{max{fA(x), fB(x)},max{fA(y), fB(y)}}
= max {(fA ∨ fB) (x), (fA ∨ fB) (y)} .

Therefore A uB = 〈µ̃A∩̃µ̃B, fA ∨ fB〉 is a cubic subsemigroup of S.
The second property can be proved in a similar manner.

Proposition 4.15. If A = 〈µ̃A, fA〉 is a right cubic ideal and B =
〈µ̃B, fB〉 is a left cubic ideal of a semigroup S, then A c©B v A uB.

Proof. Let A = 〈µ̃A, fA〉 be a right cubic ideal and B = 〈µ̃B, fB〉 any
left cubic ideal of S. Then by Theorems 4.7 and 4.8, we have A c©B v
A c©S v A and A c©B v S c©B v B. Thus A c©B v A uB.

Proposition 4.16. If S is a regular semigroup, then A c©B = A uB
for every right cubic ideal A = 〈µ̃A, fA〉 and every left cubic ideal B =
〈µ̃B, fB〉 of S.

Proof. Let a be any element of S. Since S is regular, there exist an
element x ∈ S such that a = axa. Hence we have

(µ̃A◦̃µ̃B)(a) = rsup
a=yz

[rmin{µ̃A(y), µ̃B(z)}]

� rmin{µ̃A(ax), µ̃B(a)}
� rmin{µ̃A(a), µ̃B(a)}
= (µ̃A∩̃µ̃B)(a)

and
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(fA◦fB)(a) =
∧
a=yz

max{fA(y), fB(z)}

≤ max{fA(ax), fB(a)}
≤ max{fA(a), fB(a)}
= (fA ∨ fB)(a),

and so A c©B w A uB. It follows from Proposition 4.15 that A c©B =
A uB.

We now discuss the converse of Proposition 4.16. We first consider
the following lemmas.

Lemma 4.17 ([2]). For a semigroup S, the following conditions are
equivalent.

(1) S is regular.
(2) R ∩ L = RL for every right ideal R of S and every left ideal L of

S.

Lemma 4.18. For a non-empty subset G of a semigroup S, we have

(1) G is a subsemigroup of S if and only if the characteristic cubic set
χG = 〈µ̃χG , fχG〉 of G in S is a cubic subsemigroup of S.

(2) G is a left (right) ideal of S if and only if the characteristic cubic
set χG = 〈µ̃χG , fχG〉 of G in S is a left (resp. right) cubic ideal of
S.

Proof. Straightforward.

Theorem 4.19. For every right cubic ideal A = 〈µ̃A, fA〉 and every
left cubic ideal B = 〈µ̃B, fB〉 of a semigroup S, if A c©B = A uB, then
S is regular.

Proof. Assume that A c©B = A u B for every right cubic ideal
A = 〈µ̃A, fA〉 and every left cubic ideal B = 〈µ̃B, fB〉 of a semigroup S.
Let R and L be any right ideal and any left ideal of S, respectively. In
order to see that R∩L ⊆ RL holds, let a be any element of R∩L. Then
the characteristic cubic sets χR = 〈µ̃χR , fχR〉 and χL = 〈µ̃χL , fχL〉 are
a right cubic ideal and a left cubic ideal of S, respectively, by Lemma
4.18(2). It follows from the hypothesis and Proposition 3.4 that

µ̃χRL(a) = (µ̃χR ◦̃µ̃χL) (a)

= (µ̃χR∩̃µ̃χL) (a)

= µ̃χR∩L(a) = [1, 1]
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and

fχRL(a) = (fχR◦fχL) (a)

= (fχR ∨ fχL) (a)

= fχR∩L(a) = 0

and so that a ∈ RL. Thus R ∩ L ⊆ RL. Since the inclusion in the other
direction always holds, we obtain that R ∩ L = RL. It follows from
Lemma 4.17 that S is regular.

Let A = 〈µ̃A, fA〉 be a cubic set in X. For any r ∈ [0, 1] and [s, t] ∈
D[0, 1], we define U(A ; [s, t], r) as follows:

U(A ; [s, t], r) = {x ∈ X | µ̃A(x) � [s, t], fA(x) ≤ r} ,
and we say it is a cubic level set of A = 〈µ̃A, fA〉 (see [6]).

Theorem 4.20. For a cubic set A = 〈µ̃A, fA〉 in a semigroup S, the
following are equivalent:

(1) A = 〈µ̃A, fA〉 is a cubic subsemigroup of S.
(2) Every nonempty cubic level set of A = 〈µ̃A, fA〉 is a subsemigroup

of S.

Proof. Assume that A = 〈µ̃A, fA〉 is a cubic subsemigroup of S.
Let x, y ∈ U(A ; [s, t], r) for all r ∈ [0, 1] and [s, t] ∈ D[0, 1]. Then
µ̃A(x) � [s, t], fA(x) ≤ r, µ̃A(y) � [s, t] and fA(y) ≤ r. It follows
from (4.1) that µ̃A(xy) � rmin {µ̃A(x), µ̃A(y)} � [s, t] and fA(xy) ≤
max {fA(x), fA(y)} ≤ r.Hence xy ∈ U(A ; [s, t], r) and thus U(A ; [s, t], r)
is a subsemigroup of S.

Conversely, let r ∈ [0, 1] and [s, t] ∈ D[0, 1] be such that U(A ; [s, t], r)
6= ∅, and U(A ; [s, t], r) is a subsemigroup of S. Suppose that (4.1) is
false. Then there exist a, b ∈ S such that µ̃A(ab) � rmin{µ̃A(a), µ̃A(b)}
or fA(ab) � max{fA(a), fA(b)}. If µ̃A(ab) � rmin{µ̃A(a), µ̃A(b)}, then
µ̃A(ab) ≺ [s0, t0] � rmin{µ̃A(a), µ̃A(b)} for some [s0, t0] ∈ D[0, 1]. Hence
a, b ∈ U(A ; [s0, t0],max{fA(a), fA(b)}), but

ab /∈ U(A ; [s0, t0],max{fA(a), fA(b)}).
This gives a contradiction. If fA(ab) � max{fA(a), fA(b)}, then there
exists r0 ∈ [0, 1] such that

fA(ab) > r0 ≥ max{fA(a), fA(b)}.
Thus a, b ∈ U(A ; rmin{µ̃A(a), µ̃A(b)}, r0), and ab /∈ U(A ; rmin{µ̃A(a),
µ̃A(b)}, r0). This is a contradiction. Assume that there exist [s0, t0] ∈
D[0, 1] and r0 ∈ [0, 1] such that µ̃A(ab) ≺ [s0, t0] � rmin{µ̃A(a), µ̃A(b)}
and fA(ab) > r0 ≥ max{fA(a), fA(b)}. Then a, b ∈ U(A ; [s0, t0], r0) but
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ab ∈ U(A ; [s0, t0], r0), which gives a contradiction. Hence (4.1) is valid,
and therefore A = 〈µ̃A, fA〉 is a cubic subsemigroup of S.

Theorem 4.21. For a cubic set A = 〈µ̃A, fA〉 in a semigroup S, the
following are equivalent:

(1) A = 〈µ̃A, fA〉 is a left (resp. right) cubic ideal of S.
(2) Every nonempty cubic level set of A = 〈µ̃A, fA〉 is a left (resp.

right) ideal of S.

Proof. It can be easily verified by the similar way to the proof of
Theorem 4.20.

Denote by C(X) the family of cubic sets in a set X. Let X and Y be
given classical sets. A mapping h : X → Y induces two mappings Ch :
C(X) → C(Y ), A 7→ Ch(A ), and C−1

h : C(Y ) → C(X), B 7→ C−1
h (B),

where Ch(A ) is given by

Ch(µ̃A)(y) =

 rsup
y=h(x)

µ̃A(x) if h−1(y) 6= ∅

[0, 0] otherwise

Ch(fA)(y) =

 inf
y=h(x)

fA(x) if h−1(y) 6= ∅

1 otherwise

for all y ∈ Y ; and C−1
h (B) is defined by C−1

h (µ̃B)(x) = µ̃B(h(x)) and

C−1
h (fB)(x) = fB(h(x)) for all x ∈ X. Then the mapping Ch (resp. C−1

h )
is called a cubic transformation (resp. inverse cubic transformation)
induced by h. A cubic set A = 〈µ̃A, fA〉 in X has the cubic property if
for any subset T of X there exists x0 ∈ T such that µ̃A(x0) = rsup

x∈T
µ̃A(x)

and fA(x0) = inf
x∈T

fA(x).

Theorem 4.22. For a homomorphism h : X → Y of semigroups, let
Ch : C(X)→ C(Y ) and C−1

h : C(Y )→ C(X) be the cubic transformation
and inverse cubic transformation, respectively, induced by h.

(1) If A = 〈µ̃A, fA〉 ∈ C(X) is a cubic subsemigroup of X which has
the cubic property, then Ch(A ) is a cubic subsemigroup of Y.

(2) If B = 〈µ̃B, fB〉 ∈ C(Y ) is a cubic subsemigroup of Y, then C−1
h (B)

is a cubic subsemigroup of X.

Proof. (1) Given h(x), h(y) ∈ h(X), let x0 ∈ h−1(h(x)) and y0 ∈
h−1(h(y)) be such that

µ̃A(x0) = rsup
a∈h−1(h(x))

µ̃A(a), fA(x0) = inf
a∈h−1(h(x))

fA(a),
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and
µ̃A(y0) = rsup

b∈h−1(h(y))

µ̃A(b), fA(y0) = inf
b∈h−1(h(y))

fA(b),

respectively. Then

Ch(µ̃A)(h(x)h(y)) = rsup
z∈h−1(h(x)h(y))

µ̃A(z)

� µ̃A(x0y0) � rmin{µ̃A(x0), µ̃A(y0)}

= rmin
{

rsup
a∈h−1(h(x))

µ̃A(a), rsup
b∈h−1(h(y))

µ̃A(b)
}

= rmin{Ch(µ̃A)(h(x)), Ch(µ̃A)(h(y))},
Ch(f)(h(x)h(y)) = inf

z∈h−1(h(x)h(y))
fA(z)

≤ fA(x0y0) ≤ max{fA(x0), fA(y0)}

= max
{

inf
a∈h−1(h(x))

fA(a), inf
b∈h−1(h(y))

fA(b)
}

= max{Ch(h(x)), Ch(h(y))}.
Therefore Ch(A ) is a cubic subsemigroup of Y.

(2) For any x, y ∈ X, we have

C−1
h (µ̃B)(xy) = µ̃B(h(xy)) = µ̃B(h(x)h(y))

� rmin{µ̃B(h(x)), µ̃B(h(y))}
= rmin{C−1

h (µ̃B)(x), C−1
h (µ̃B)(y)},

C−1
h (fB)(xy) = fB(h(xy)) = fB(h(x)h(y))

≤ max{fB(h(x)), fB(h(y))}
= max{C−1

h (fB)(x), C−1
h (fB)(y)}.

Hence C−1
h (B) is a cubic subsemigroup of X.

By the similar way to the proof of Theorem 4.22, we have the following
theorem.

Theorem 4.23. For a homomorphism h : X → Y of semigroups, let
Ch : C(X)→ C(Y ) and C−1

h : C(Y )→ C(X) be the cubic transformation
and inverse cubic transformation, respectively, induced by h.

(1) If A = 〈µ̃A, fA〉 ∈ C(X) is a left (resp. right) cubic ideal of X
which has the cubic property, then Ch(A ) is a left (resp. right)
cubic ideal of Y.

(2) If B = 〈µ̃B, fB〉 ∈ C(Y ) is a left (resp. right) cubic ideal of Y, then
C−1
h (B) is a left (resp. right) cubic ideal of X.
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[10] I. B. Turksen, Interval-valued fuzzy sets based on normal forms, Fuzzy Sets and
Systems 20 (1986), 191-210.

[11] I. B. Turksen, Interval-valued fuzzy sets and compensatory AND, Fuzzy Sets and
Systems 51 (1992), 295-307.

[12] I. B. Turksen, Interval-valued strict preference with Zadeh triples, Fuzzy Sets and
Systems 78 (1996) 183-195.

[13] L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353.
[14] L. A. Zadeh, The concept of a linguistic variable and its application to approxi-

mate reasoning-I, Inform. Sci. 8 (1975), 199-249.

Young Bae Jun
Department of Mathematics Education (and RINS),
Gyeongsang National University,
Chinju 660-701, Korea.
E-mail: skywine@gmail.com

Asghar Khan
Department of Mathematics, Abdul Wali Khan University,
Mardan, KPK, Pakistan.
E-mail: azhar4set@yahoo.com


