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Based on the Debye-Hückel equation, a semi-empirical equation for activity coefficients was derived through

empirical and theoretical trial and error efforts. The obtained equation included two parameters: the

proportional factor and the effective radius of an ionic sphere. These parameters were used in the empirical and

regression parameter fitting of the calculated values to the experimental results. The activity coefficients

calculated from the equation agreed with the data. Transforming to a semi-empirical form, the equation was

expressed with one parameter, the ion radius. The ion radius, α, was divided into three parameters, αcation, αanion

and δcation, representing parameters for the cation, anion and combination, respectively. The advantage of this

equation is the ability to propose a semi-empirical equation that can easily determine the activity coefficient

with just one parameter, so the equation is expected to be used more widely in actual industry applications.
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Introduction

The Debye-Hückel equation1 is widely used to estimate

the activity coefficient in a dilute ion solution. In the equa-

tion, the activity coefficient decreases when the molality

increases. However, in practice, the activity coefficient increases

in concentrations with a molality greater than 1. This is

caused by the presence of the short-range interaction, or the

ion-molecule interaction, which was not considered in the

original Debye-Hückel equation.2

To correct for this increase, several empirical parameters

have been proposed and implemented: the Guggenheim

equation,3 specific interaction theory (SIT),4 modified SIT,5

Bromley equation6 and modified Bromley’s methodology.7

Hydration corrections have also been adapted to improve the

prediction of the original equation: Stokes and Robinson’s

first8 and second models,9 Glueckauf’s model,10 Nesbitt’s

model11 and Schönert’s model.12

Lin et al.13 and Pitzer et al.14,15 made attempts to theore-

tically improve the Debye-Hückel equation. Lin et al. em-

ployed the concept of solvation to account for ion-molecule

interactions. Pitzer et al. modified the equation by including

the third term of the Maclaurin expansion, which was

neglected in the Debye-Hückel theory. Pitzer also proposed

a model with expanded virial parameters to account for the

short-range interactions.

Local composition theory gives more detailed information

about the electrolyte system as it considers the relationship

between the macroscopic composition of a bulk liquid and

the composition of lattices using interaction parameters.

Based on this model, various other models were developed:

Wilson’s model,16 non-random two liquid (NRTL)17,18 theory,

the universal quasi-chemical (UNIQUAC)19 theory model

and the self-consistent local composition (SCLC)20, 21 model.

Recently, using computational simulation, there have been

many attempts to precisely calculate thermodynamic factors,

such as the activity coefficient.22,23

A Semi-empirical Equation. Through trial and error, we

extended the original equation and found that the following

equation was in good agreement with the observed data for

calculating activity coefficients. The equation can be applied

over a broad concentration range and is especially useful at

higher concentrations.

(1)

The parameters α and β are, respectively, the proportional

factor and the effective radius of an ionic sphere. These

parameters are used in the empirical and regression para-

meter fitting of the calculated values with the experimental

results. Table 1 lists the constants for the two parameters

using the best fit values for each ion in Eq. (1). The values

calculated from the equation agree with the experimental

results from Stokes and Robinson.8 The average values are

1.375 × 10−10 and 1.884 × 10−10 for α and β, respectively. A

ln γ± = −β
α
--- I

1/2 1 κα–

1 κα+
----------------⎝ ⎠

⎛ ⎞⋅

Notations
α = radius of the ionic sphere, m
h = the proportionality factor
r = radial distance from the center of the spherical unit, m
e = elementary charge, 1.602 × 10−19 F·V
I
1/2 = ionic strength, molality

k = Boltzmann's constant, 1.381 × 10−23 C·V/K
T = temperature of the solution, 298.15 K
zi,j = charge number of ion species i, j
ε = the permittivity of water at 25 oC, 6.957 × 10−10 F/m
κ
−1 = the Debye screening length, (3.0434 Å)·I−1/2 m

λ = coupling parameter
μ = electric dipole moment
ν = stoichiometric coefficient
ρi = the number density of charges of species i
ϕj = the potential on the inside of the sphere
ψj = the potential on the outside of the sphere
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comparison of the experimental and calculated activity coeffi-

cients is shown in Tables 2 and 3.

The parameter β can be expressed as a power function of

α as follows (RSQ = 0.9928, 0.9905).

β 81.179·α1.1925 for 1:1 electrolyte (2)

β 311.61·α1.2275 for 2:1 electrolyte (3)

Dividing by (1/2Σzi
2)1/2, Eqs. (2) and (3) can be combined

  ≅

  ≅

Table 1. Constants of Eq. (1) giving best fits to the experimental activity coefficients and the accuracy (a) using Eqn. (1) and (b) using Eqns.
(1), (2), (3) and (4)

α × 1010 β × 1010 (a)

acc.%

(b)

acc.%
α × 1010 β × 1010 (a)

acc.%

(b)

acc.%

HCl 2.128 2.468 99.587 99.157 MgCl2 1.227 2.164 99.279 96.730

HBr 2.348 2.650 99.844 99.794 MgBr2 1.434 2.648 99.614 98.809

HI 2.815 3.282 99.799 99.739 MgI2 1.584 2.804 99.756 98.620

LiCl 1.915 2.131 99.816 99.420 CaCl2 1.105 1.910 99.189 98.471

LiBr 2.189 2.671 98.846 98.219 CaBr2 1.251 2.217 99.570 99.407

LiI 2.573 2.814 99.822 99.164 CaI2 1.447 2.587 99.558 99.491

NaCl 1.180 1.141 99.420 97.584 SrCl2 1.017 1.696 99.076 98.749

NaBr 1.381 1.385 99.551 99.215 SrBr2 1.151 1.973 99.318 99.287

NaI 1.654 1.724 99.587 96.503 SrI2 1.357 2.356 99.561 99.001

KCl 0.838 0.760 99.084 98.826 BaCl2 0.847 1.315 98.010 97.549

KBr 0.894 0.809 99.039 98.322 BaBr2 1.010 1.650 98.865 98.628

KI 1.007 0.896 98.992 95.713 BaI2 1.321 2.306 99.466 99.386

RbCl 0.866 0.851 99.456 97.918 MnCl2 1.035 1.701 98.956 98.725

RbBr 0.834 0.816 99.357 98.003 FeCl2 1.111 1.919 99.351 98.636

RbI 0.825 0.811 99.405 98.384 CoCl2 1.147 1.989 99.413 98.984

NiCl2 1.146 1.965 99.178 99.103

Table 2. Comparison of experimental activity coefficients with calculated values for 1:1 ions

m
HCl HBr HI LiCl LiBr LiI NaCl NaBr

Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs.

0.1 0.791 0.796 0.805 0.805 0.817 0.818 0.790 0.790 0.784 0.796 0.819 0.815 0.787 0.778 0.789 0.782

0.2 0.762 0.767 0.782 0.782 0.805 0.807 0.756 0.757 0.756 0.766 0.802 0.802 0.737 0.735 0.743 0.741

0.3 0.778 0.778 0.811 0.811 0.743 0.744 0.748 0.756 0.803 0.804 0.709 0.710 0.718 0.719

0.5 0.758 0.757 0.791 0.789 0.842 0.839 0.739 0.739 0.755 0.753 0.823 0.824 0.677 0.681 0.694 0.697

0.7 0.816 0.815 0.883 0.883 0.749 0.748 0.776 0.767 0.855 0.852 0.662 0.667 0.686 0.689

1 0.814 0.809 0.864 0.871 0.955 0.963 0.776 0.774 0.820 0.803 0.653 0.657 0.686 0.687

1.5 0.896 0.896 0.838 0.838 0.910 0.895 0.656 0.656 0.704 0.703

2.0 0.991 1.000 0.912 0.921 1.015 1.015 0.671 0.668 0.734 0.731

2.5 1.132 1.161 0.693 0.688 0.770 0.768

3 0.720 0.714 0.812 0.812

4 0.783 0.783 0.907 0.929

5 0.857 0.874

m
NaI KCl KBr KI RbCl RbBr RbI

Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs.

0.1 0.792 0.787 0.786 0.770 0.789 0.772 0.796 0.778 0.772 0.764 0.771 0.763 0.770 0.762

0.2 0.753 0.751 0.729 0.718 0.733 0.722 0.744 0.733 0.712 0.709 0.710 0.706 0.709 0.705

0.3 0.734 0.735 0.693 0.688 0.699 0.693 0.713 0.707 0.675 0.675 0.673 0.673 0.671 0.671

0.5 0.721 0.723 0.649 0.649 0.657 0.657 0.677 0.676 0.630 0.634 0.627 0.632 0.624 0.629

0.7 0.721 0.724 0.622 0.626 0.632 0.636 0.656 0.660 0.603 0.608 0.599 0.605 0.596 0.602

1 0.735 0.736 0.597 0.604 0.610 0.617 0.640 0.645 0.579 0.583 0.573 0.578 0.569 0.575

1.5 0.774 0.771 0.577 0.583 0.593 0.600 0.631 0.637 0.559 0.559 0.551 0.551 0.547 0.547

2 0.825 0.820 0.569 0.573 0.589 0.593 0.634 0.637 0.553 0.546 0.543 0.536 0.538 0.533

2.5 0.883 0.883 0.569 0.569 0.593 0.593 0.644 0.644

3 0.947 0.963 0.573 0.569 0.600 0.595 0.658 0.652

4 0.591 0.577 0.625 0.608 0.696 0.673

5
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(RSQ = 0.9813). The parameter α can also be divided into

three parameters, αcation, αanion and δcation, representing para-

meters for the cation, the anion and the combination, respec-

tively. The combination parameter δcation is believed to

represent the dipole angular relation because its value is 1

for a 1:1 electrolyte. Table 4 lists the values for αcation, αanion

and δcation. The equation is expressed as follows.

(4)

 

Eq. (1) could be expressed with only one parameter, α,

which combines the cation and anion parameters as a semi-

empirical form. Using Eqs. (1), (2), (3) and (4), the accuracy

of the recalculated activity coefficients are shown in Table 1.

In Figure 1, the calculated results using one and two para-

meters are shown for several ions by comparing the experi-

mental results with the hydration correction by the Stokes

and Robinson model.8

The combination parameter δcation can also be expressed as

a linear equation with αcation, as follows (RSQ = 0.9895).

δcation 1.1117·αcation + 0.1886 (5)

The above equation allows the activity coefficient to be

calculated using only one parameter. The use of statistical-

mechanics-based simulations and computational methods

may be more accurate,22,23 but the simple proposed equation

is expected to be more effective in real-world industry

applications.

α × 10
10

 
δcation

αcation αanion+
------------------------------⎝ ⎠

⎛ ⎞
2

≅

  ≅

Table 3. Comparison of experimental activity coefficients with calculated values for 2:1 ions

m
MgCl2 MgBr2 MgI2 CaCl2 CaBr2 CaI2 SrCl2 SrBr2

Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs.

0.1 0.540 0.529 0.551 0.550 0.583 0.580 0.531 0.518 0.541 0.532 0.563 0.560 0.532 0.511 0.540 0.526

0.2 0.489 0.489 0.514 0.518 0.558 0.558 0.472 0.472 0.492 0.492 0.528 0.531 0.467 0.462 0.484 0.483

0.3 0.474 0.477 0.512 0.517 0.566 0.567 0.450 0.455 0.478 0.482 0.526 0.531 0.440 0.442 0.464 0.468

0.5 0.481 0.481 0.545 0.545 0.619 0.614 0.443 0.448 0.489 0.491 0.561 0.561 0.425 0.430 0.463 0.467

0.7 0.511 0.506 0.604 0.599 0.698 0.698 0.460 0.460 0.522 0.522 0.621 0.614 0.432 0.434 0.484 0.484

1 0.581 0.570 0.723 0.723 0.506 0.500 0.597 0.597 0.741 0.741 0.463 0.461 0.538 0.535

1.4 0.709 0.709 0.595 0.587 0.528 0.524 0.640 0.643

1.8 0.712 0.712 0.614 0.614

2.5

3

4

5

m
SrI2 BaCl2 BaBr2 BaI2 MnCl2 FeCl2 CoCl2 NiCl2

Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs.

0.1 0.561 0.553 0.535 0.500 0.538 0.513 0.555 0.542 0.539 0.516 0.532 0.518 0.536 0.522 0.539 0.522

0.2 0.520 0.520 0.460 0.444 0.474 0.465 0.511 0.509 0.476 0.469 0.473 0.473 0.479 0.479 0.483 0.479

0.3 0.513 0.517 0.424 0.419 0.446 0.446 0.502 0.502 0.450 0.450 0.451 0.454 0.459 0.463 0.463 0.463

0.5 0.536 0.536 0.393 0.397 0.430 0.435 0.520 0.523 0.436 0.440 0.445 0.450 0.458 0.462 0.461 0.464

0.7 0.583 0.578 0.384 0.391 0.436 0.442 0.562 0.562 0.445 0.448 0.462 0.463 0.479 0.479 0.482 0.482

1 0.680 0.680 0.391 0.395 0.466 0.469 0.651 0.649 0.479 0.479 0.509 0.506 0.532 0.531 0.535 0.536

1.4 0.419 0.419 0.529 0.529 0.548 0.542 0.600 0.596 0.634 0.634 0.636 0.647

1.8 0.461 0.449 0.613 0.609 0.719 0.719

2.5

3

4

5

Table 4. Constants of Eq. (4) giving best fits to the parameter α

αcation δcation αanion

H+ 0.306 1

Li+ 0.339 1

Na+ 0.604 1

K+ 0.998 1

Rb+ -1.319 1

Mg2+ 0.457 0.802

Ca2+ 0.373 0.611

Sr2+ 0.297 0.480

Ba2+ 0.184 0.308

Mn2+ 1.854 2.105

Fe2+ 1.854 2.259

Co2+ 1.536 1.969

Ni2+ 1.579 2.017

Cl− 0.180

Br− 0.120

I− 0.049
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Assumptions and Derivation #1: Empirical Trial and

Error Approach. The original Debye-Hückel equation is as

follows.2

(6)

Combining the constant terms into parameter C, Eq. (6)

can be expressed as follows.

(7)

Through trial and error efforts, it was found that the (1-κα)

term can produce a rebound increase of Eq. (7). From the

regression curve, the constant term C is also expected to be

related with the term α. Such expectations showed good

agreement with the experimental results; consequently, we

modified the original equation to Eq. (1).

Assumptions and Derivations #2: Theoretical Trial and

Error Approach.

Inside the Sphere: The derivation of Eq. (1) was deter-

mined through trial and error. The theoretical approach was

very rough, but the main goal of this work was to find a

simple and useful equation that could be obtained from just

one parameter. The derivation process was based on the

following two main assumptions.

First Assumption−In an electrolyte, ionic molecules form

a spherical cluster, such as in the mean spherical model

(MSM).24 We assumed that the cluster produces a spherical-

ly symmetric potential surrounding the ions, and the potential

behaves as a dipole moment. The moment includes the elec-

tric charge fraction as follows. The electric charge fraction is

the degree of bias of shared pair electrons in molecules.

(8)

Here, we assume that the electron fraction is proportional

to the intensity of the surrounding ions, or I1/2. The constant

η is a proportional factor.

(9)

Second Assumption−The interaction is caused from the

clustering of multiple molecules, and it should be numeri-

cally scaled down to a one molecule unit as in the original

derivation, so the potential can be divided by a unitizing

factor. Because η is treated as a regression parameter, it

includes a functional term for unitization or scaling down

which focuses on one dipole of the cluster. The cluster

moment μC could be changed to μc, representing unitized

cluster moment. The parameter η also serves as a propor-

ln γ± = −
zj
2
e
2
κ

2εkT 1 κα+( )
-------------------------------

ln γ± = −C
I
1/2

1 κα+
---------------⋅

μC δ∝

δ = η I
1/2⋅

Figure 1. Calculated results using Eqn. (1) and Eqns. (1)-(4) for several ions by comparing the experimental results with the hydration
correction by the Stokes and Robinson model for (a) HBr, (b) LiCl, (c) CaI2, (d) SrI2.
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tional factor including the other term of the moment, μc. In

conclusion, the moment could be expressed as follows.

(10)

The electric potential of the dipole moment is expressed as

follows,25 where the parameter h is a proportional factor.

(11)

According to the Debye-Hückel theory, the ionic atmosphere

is induced by a term that is independent of the distance, i.e.,

is not governed by the distance. Therefore, A0, a constant

representing the ionic atmosphere, is added to the potential

as follows.

(12)

Then, by taking the derivative with respect to the radius,

we obtain: 

(13)

Outside the Sphere1: The region outside of the sphere is

governed by the Poisson-Boltzmann equation. Thus, ψj

represents the center potential outside of the sphere.

(14)

In the case that zieψj(r) << 1, the right side can be ex-

panded using a power series, and the higher order terms can

be neglected. By maintaining the isotropy, Eq. (14) is

expressed as follows:

 (15-1)

 (15-2)

 (15-3)

where 

(16)

Note that the general solution can be written as:

(17)

However, since ψj → 0 if r → ∞, c2 = 0. Hence, the above

equation reduces to:

(18)

Thus, the potential outside the sphere can be written as

follows. 

 (19)

By differentiating, we obtain:

(20)

Ionic Atmosphere: The boundary conditions at radius α

can be expressed as follows. 

(21)

(22)

Using the first boundary condition,

(23)

(24)

The derivation can be further simplified using the second

boundary condition:

(25)

(26)

Then, by substituting for c1 and rearranging, we obtain:

(27)

where 

(28)

By substituting Eq. (28) into the original equation as the

ionic atmosphere term, (1−κα) can be inserted. The

parameters h, η and other constant terms can be combined

by introducing a new parameter, β. The parameter β can be

expressed as a power function with α, so Eq. (2) and (3) can

be obtained.

Galvani Potential: With the Galvani potential, the activity

coefficients can be calculated using the following equation,

where the coupling parameter λ was optionally introduced

for the reversible insertion, or charging process.2

(29)

In Eq. (29), qi = zie is the electrical charge of the surround-

ing ions and ionic atmosphere, and ϕatmo is the potential of

the ionic atmosphere. For conventional use, we simplified

the equation considering the mean ionic activity coefficient,

γ±. Since the interaction is the potential double of the other

signs, the equation was multiplied by −1. 

(30)

μc = η I
1/2⋅

ϕ r( ) = h μc⋅ /r
2

ϕj r( ) = h μc⋅ /r
2
 + A0

dϕj

dr
------- = − 2h

μc

r
3

-----⋅

∇2ψj = − e
ε
--  

i=1

N

∑ ziρie
zieψj r( )/kT–

1

r
2

----
d

dr
----- r

2∂ψj

∂r
--------⎝ ⎠

⎛ ⎞  = −e

ε
--  

i=1

N

∑ ziρi 1
zieψj

kT
------------–⎝ ⎠

⎛ ⎞

= 
e
2ψj

εkT
----------  

i=1

N

∑ zi

2
ρi

= κ
2 ψj⋅

κ
2
 = 

e
2

εkT
----------  

i=1

N

∑ zi

2
ρi

rψj = c1e
κr–

 + c2e
+κr

rψj = c1e
κr–

ψj r( ) = 
c1e

κr–

r
-------------

dψj

dr
-------- = − 

c1e
κr–

1 κr+( )

r
2

-------------------------------

ψj α( ) = ϕj α( )

∂ψj

∂r
--------⎝ ⎠

⎛ ⎞
α

 = 
∂ψj

∂r
--------⎝ ⎠

⎛ ⎞
α

−
c1e

κa–
1 κα+( )

α
2

--------------------------------- = − 2h
μc

α
3

-----⋅

c1 = 2h
μc

α
-----⋅ e

κa
1 κ+ α⋅( ) 1–

c1e
κα–

α
-------------- = A0 + h

μc

α
2

-----⋅

c1e
κa–

 = A0α + h
μc

α
-----⋅

2h
μc

α
-----⋅ 1 κ+ α( ) 1–

 = A0α + h
μc

α
-----⋅

A0 = h
μc

α
2

-----⋅ 1 κα–

1 κα+
----------------⎝ ⎠

⎛ ⎞

kT γln  = Σqi  

0

1

∫ϕatmodλ

v kT⋅ lnγ± = −Σνi zi e  

0

1

∫A0dλ
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Substituting A0 gives

 (31)

and dividing Eq. (31) by ν results in

(32)

The equation could be further simplified by introducing

the new parameter, β, which includes the h, η and (Σνi|zi|/ν)

terms. As a result, Eq. (32) was modified to Eq. (1) for

simplicity as a semi-empirical equation.

Conclusions

The most noticeable merits are the usefulness and simpli-

city in obtaining the activity coefficients using just one para-

meter. This equation could calculate results that fit experi-

mental ones. Former empirical equations, such as the Gug-

genheim equation,3 the Specific Interaction theory,4,5 the

Bromely equation6,7 and so on, are polynomials or need

more than two parameters.2 This equation cannot yet be ap-

plied to a two-solvent system, but it can be utilized to

calculate activity coefficients with one parameter, which

represents each ion in an ionic solution.
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