DOI QR코드

DOI QR Code

Fire performance curves for unprotected HSS steel columns

  • Shahria Alam, M. (School of Engineering, The University of British Columbia) ;
  • Muntasir Billah, A.H.M. (School of Engineering, The University of British Columbia) ;
  • Quayyum, Shahriar (Department of Civil, Construction, & Env Engineering, North Carolina State University) ;
  • Ashraf, Mahmud (School of Engineering and IT, The University of New South Wales) ;
  • Rafi, A.N.M. (IES Associates Windsor) ;
  • Rteil, Ahmad (School of Engineering, The University of British Columbia)
  • Received : 2011.11.24
  • Accepted : 2013.09.16
  • Published : 2013.12.25

Abstract

The behaviour of steel column at elevated temperature is significantly different than that at ambient temperature due to its changes in the mechanical properties with temperature. Reported literature suggests that steel column may become vulnerable when exposed to fire condition, since its strength and capacity decrease rapidly with temperature. The present study aims at investigating the lateral load resistance of non-insulated steel columns under fire exposure through finite element analysis. The studied parameters include moment-rotation behaviour, lateral load-deflection behaviour, stiffness and ductility of columns at different axial load levels. It was observed that when the temperature of the column was increased, there was a significant reduction in the lateral load and moment capacity of the non-insulated steel columns. Moreover, it was noted that the stiffness and ductility of steel columns decreased sharply with the increase in temperature, especially for temperatures above $400^{\circ}C$. In addition, the lateral load capacity and the moment capacity of columns were plotted against fire exposure time, which revealed that in fire conditions, the non-insulated steel columns experience substantial reduction in lateral load resistance within 15 minutes of fire exposure.

Keywords

References

  1. Alam, M.S., Youssef, M.A. and Nehdi, M. (2008), "Analytical prediction of the seismic behaviour of superelastic shape memory alloy reinforced concrete elements", Eng. Struct., 30(12), 3399-3411. https://doi.org/10.1016/j.engstruct.2008.05.025
  2. Alam, M.S., Youssef, M.A. and Nehdi, M. (2009), "Seismic performance of concrete frame structures reinforced with superelastic shape memory alloys", Smart Struct. Syst., Int. J., 5(5), 565-585. https://doi.org/10.12989/sss.2009.5.5.565
  3. Ali, F. and O'Connor, D. (2001), "Structural performance of rotationally restrained steel columns in fire", Fire Safety J., 36(7), 679-691. https://doi.org/10.1016/S0379-7112(01)00017-0
  4. Ali, F., Nadjal, A., Silcock, G. and Abu-Tair, A. (2004), "Outcomes of a major research on fire resistance of concrete columns," Fire Safety J., 39(6), 433-445. https://doi.org/10.1016/j.firesaf.2004.02.004
  5. Billah, A.H.M.M. and Alam, M.S. (2013), "Performance-based prioritization for seismic retrofitting of RC bridge bents", Struct. Infrastruct. Eng. DOI: 10.1080/15732479.2013.772641 [In Press]
  6. Cai, J. and Feng, J. (2010), "Thermal buckling of rotationally restrained steel columns", J. Construct. Steel Res., 66(6), 835-841. https://doi.org/10.1016/j.jcsr.2010.01.010
  7. Choe, L., Varma, A.H., Agarwal, A. and Surovek, A. (2011), "Fundamental behaviour of steel beamcolumns and columns under fire loading: Experimental evaluation", ASCE J. Struct. Eng., 137, 954-966. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000446
  8. CISC 2006, Handbook of Steel Construction, (9th Edition), Canadian Institute of Steel Construction (CISC), Toronto, ON, Canada.
  9. CSA S16 (2009), Design of Steel Structures, Canadian Standards Association, Mississauga, ON, Canada.
  10. Culver, C. (1972), "Steel column buckling under thermal gradients", ASCE J. Struct. Eng., 92(8), 1853-1865.
  11. European Committee for Standardisation (CEN) (2004), Eurocode 3, Design of Steel Structures: Part 1.2: General Rules, "Structural fire design", Brussels.
  12. Franssen, J.M. and Dotreppe, J.C. (1992), "Fire resistance of columns in steel frames", Fire Safety J., 19(2-3), 159-175. https://doi.org/10.1016/0379-7112(92)90031-7
  13. Franssen, J.M., Schleich, J.B. and Cajot, L.G. (1995), "A simple model for the fire resistance of axially-loaded members according to Eurocode 3", J. Construct. Steel Res., 35(1), 49-69. https://doi.org/10.1016/0143-974X(94)00042-D
  14. Franssen, J.M., Schleich, J.B., Cajot, L.G. and Azpiaxu, W. (1996), "A simple model for the fire resistance of axially loaded members-comparison with experimental results", J. Construct. Steel Res., 37(3), 175-204. https://doi.org/10.1016/0143-974X(96)00008-9
  15. Franssen, J.M., Talamona, D., Kruppa, J. and Cajot, L.G. (1998), "Stability of steel columns in case of fire: Experimental evaluation", ASCE J. Struct. Eng., 124(2), 158-163. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:2(158)
  16. Gardner, L., Insausti, A., Ng, K.T. and Ashraf, M. (2010), "Elevated temperature material properties of stainless steel alloys", J. Construct. Steel Res., 66(5), 634-647. https://doi.org/10.1016/j.jcsr.2009.12.016
  17. Heva, Y.B. and Mahendran, M. (2013), "Flexural-torsional buckling tests of cold-formed steel compression members at elevated temperatures", Steel Compos. Struct., Int. J., 14(3), 205-227. https://doi.org/10.12989/scs.2013.14.3.205
  18. ISO (International Standards Organization) (1980), ISO 834: Fire Resistance Tests, Elements of Building Construction, Switzerland.
  19. Kodur, V.K.R. (1998), "Performance-based fire resistance design of concrete-filled steel columns", J. Construct. Steel Res., 51(1), 21-36.
  20. Kodur, V.K.R. and Lie, T.T. (1997), "Evaluation of fire resistance of rectangular steel columns filled with fibre-reinforced concrete", Can. J. Civil Eng., 24(3), 339-349. https://doi.org/10.1139/l96-114
  21. Lie, T.T. (1978), "Fire resistance of structural steel", Eng. J., American Institute of Steel Construction, 116-125.
  22. Lie, T.T. (1994), "Calculation of the fire resistance of steel hollow structural section columns filled with plain concrete", Can. J. Civil Eng., 21(3), 382-385. https://doi.org/10.1139/l94-041
  23. Neves, I.C., Valente, J.C. and Correia Rodrigues, J.P. (2002), "Thermal restraint and fire resistance of columns", Fire Safety Journal, 37(8), 753-771. https://doi.org/10.1016/S0379-7112(02)00029-2
  24. Ossenbruggen, P., Aggarwal, V. and Culver, C. (1973), "Steel column failure under thermal gradients", ASCE J. Struct. Eng., 99(4), 727-739.
  25. Outinen, J. (2007), "Mechanical properties of structural steels at high temperatures and after cooling down", Doctoral Dissertation, Helsinki University of Technology, TKK-TER-32, Helsinki.
  26. PEER (2010), http://nisee2.berkeley.edu/peer/prediction_contest. Accessed on September 5, 2011.
  27. Poh, K.W. and Bennetts, I.D. (1995a), "Analysis of structural members under elevated temperature conditions", ASCE J. Struct. Eng., 121(4), 664-675. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:4(664)
  28. Poh, K.W. and Bennetts, I.D. (1995b), "Behaviour of steel columns at elevated temperatures", ASCE J. Struct. Eng., 121(4), 676-684. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:4(676)
  29. Poh, K.W. (1998), "Behaviour of load-bearing members in fire", Ph.D. Thesis, Monash University, Clayton.
  30. Seismostruct, V5.0.5 (2010), www.seismosoft.com
  31. Rodrigues, J.P.C., Cabrita Neves, I. and Valente, J.C. (2000), "Experimental research on the critical temperature of compressed steel elements with restrained thermal elongation", Fire Safety J., 35(2), 77-98. https://doi.org/10.1016/S0379-7112(00)00018-7
  32. Takagi, J. and Deierlein, G.G. (2007), "Strength design criteria for steel members at elevated temperatures", J. Construct. Steel Res., 63(8), 1036-1050. https://doi.org/10.1016/j.jcsr.2006.10.005
  33. Talamona, D., Franssen, J.M., Schleich, J.B. and Kruppa, J. (1997), "Stability of steel columns in case of fire: Numerical modeling", ASCE J. Struct. Eng., 123(6), 713-720. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:6(713)
  34. Tang, C.Y., Tan, K.H. and Ting, S.K. (2001), "Basis and application of a simple interaction formula for steel columns under fire conditions", ASCE J. Struct. Eng., 127(10), 1206-1213. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:10(1206)
  35. Tao, Z., Wang, Z.B., Han, L.H. and Uy, B. (2011), "Fire performance of concrete-filled steel tubular columns strengthened by CFRP", Steel Compos. Struct., Int. J., 11(4), 307-324. https://doi.org/10.12989/scs.2011.11.4.307
  36. Toh, W.S., Tan, K.H. and Fung, T.C. (2000), "Compressive resistance of steel columns in fire: The Rankine approach", ASCE J. Struct. Eng., 126(3), 398-405. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(398)
  37. Twilt, L. (1991), TNO-report BI-91-015: Stress-strain relationships of structural steel at elevated temperatures: Analysis of various options & European proposal, Delft, TNO.
  38. Wang, W.Y. and Li, G.Q. (2009), "Behaviour of steel columns in a fire with partial damage to fire protection", J. Construct. Steel Res., 65(6), 1392-1400. https://doi.org/10.1016/j.jcsr.2009.01.004
  39. Yang, K.C. and Yu, Z.H. (2013), "Experimental research on the creep buckling of fire-resistant steel columns at elevated temperature", Steel Compos. Struct., Int. J., 15(2), 163-173. https://doi.org/10.12989/scs.2013.15.2.163
  40. Yang, K., Chen, S. and Ho, M. (2009), "Behaviour of beam-to-column moment connections under fire load", J. Construct. Steel Res., 65(7), 1520-1527. https://doi.org/10.1016/j.jcsr.2009.02.010
  41. Yang, K. and Hsu, R. (2009), "Structural behaviour of centrally loaded steel columns at elevated temperature", J. Construct. Steel Res., 65(10-11), 2062-2068. https://doi.org/10.1016/j.jcsr.2009.06.007
  42. Yang, K.C., Lee, H.H. and Chan, O. (2006a), "Performance of steel H columns loaded under uniform temperature", Journal of Constructional Steel Research, 62(3), 262-270. https://doi.org/10.1016/j.jcsr.2005.07.001
  43. Yang, K.C., Lee, H.H. and Olen, C. (2006b), "Experimental study on fire-resistant steel H columns subjected to fire load", J. Construct. Steel Res., 62(6), 544-553. https://doi.org/10.1016/j.jcsr.2005.09.008

Cited by

  1. Thermal behavior of elastic columns with second-mode imperfections vol.71, 2016, https://doi.org/10.1016/j.mechrescom.2015.11.004
  2. Experimental study and analysis on the collapse behavior of an interior column in a steel structure under local fire vol.19, pp.2, 2016, https://doi.org/10.1177/1369433215624318
  3. Experimental Study on the Fire Performance of Tubular Steel Columns with Membrane Protections for Prefabricated and Modular Steel Construction vol.11, pp.3, 2018, https://doi.org/10.3390/ma11030437