DOI QR코드

DOI QR Code

OpenCV를 이용한 도로표지 영상에서의 방향정보 자동인식

Automatic Recognition of Direction Information in Road Sign Image Using OpenCV

  • Kim, Gihong (Gangneung-Wonju National University, Department of Civil Engineering) ;
  • Chong, Kyusoo (Korea Institute of Construction Technology, ICT Convergence and Integration Research Division) ;
  • Youn, Junhee (Korea Institute of Construction Technology, ICT Convergence and Integration Research Division)
  • 투고 : 2013.07.23
  • 심사 : 2013.08.29
  • 발행 : 2013.08.31

초록

도로표지는 운전자들에게 유용한 정보들을 제공함으로서 안전하고 원활한 교통을 확보하기 위한 중요한 시설물이다. 도로표지를 체계적으로 관리하기 위해서는 도로표지 내용에 대한 DB구축이 필요하며 이를 위한 작업은 거의 수동으로 진행되고 있어 많은 시간과 비용이 소요된다. 본 연구에서는 도로표지 영상에서 방향정보를 자동으로 인식 추출하기 위한 알고리즘을 제안하였다. 또한 OpenCV를 이용해 이를 구현하였으며 도로표지 영상에 적용하였다. 방향정보의 자동추출을 위해, 영상 개선, 영상 이진화, 방향지시 도형 영역 추출, 특징점 추출, 템플릿 영상정합 등의 영상처리 기법을 코딩하여 적용하였으며 이를 통해 방향정보 자동 인식의 가능성을 확인하였다.

Road signs are important infrastructures for safe and smooth traffic by providing useful information to drivers. It is necessary to establish road sign DB for managing road signs systematically. To provide such DB, manually detection and recognition from imagery can be done. However, it is time and cost consuming. In this study, we proposed algorithms for automatic recognition of direction information in road sign image. Also we developed algorithm code using OpenCV library, and applied it to road sign image. To automatically detect and recognize direction information, we developed program which is composed of various modules such as image enhancement, image binarization, arrow region extraction, interesting point extraction, and template image matching. As a result, we can confirm the possibility of automatic recognition of direction information in road sign image.

키워드

참고문헌

  1. Choi, J. S. and Kang, J. M. (2012), A study of effective method to update the database for road traffic facilities using digital image processing and pattern recognition, Journal of the Korean Society for Geospatial Information System, Vol. 20, No. 2, pp. 31-37. (in Korean with English abstract) https://doi.org/10.7319/kogsis.2012.20.2.031
  2. Epshtein, B., Ofek, E., and Wexler, Y. (2010), Detecting text in natural scenes with stroke width transform, 2010 IEEE Conference on Computer Vision and Pattern Recognition, 13-18 June, San Francisco, USA, pp. 2963-2970.
  3. Fang, C. Y., Fuh, C. S., Yen, P. S., Cherng, S., and Chen, S. W. (2004), An automatic road sign recognition system based on a computational model of human recognition processing, Computer Vision and Image Understanding, Vol. 96, pp. 237-268. https://doi.org/10.1016/j.cviu.2004.02.007
  4. Gonzalez, A., Bergasa, L. M., Yebes, J., and Almazan, J. (2012), Text recognition on traffic panels from street-level imagery, 2012 Intelligent Vehicles Symposium, 3-7 June, Alcala de Henares, Spain, pp. 340-345.
  5. Hu, Z. (2013), Intelligent road sign inventory (IRSI) with image recognition and attribute computation from video log, Computer-Aided Civil and Infrastructure Engineering, Vol. 28, No. 2, pp. 130-145. https://doi.org/10.1111/j.1467-8667.2012.00768.x
  6. Huang, X., Liu, K., and Zhu, L. (2012) Auto scene text detection based on edge and color features, 2012 International Conference on Systems and Informatics, 19- 20 May, Yantai, China, pp. 1882-1886.
  7. Khan, J. F., Bhuiyan, S. M. A., and Adhami, R. R. (2011), Image segmentation and shpae analysis for road-sign detection, IEEE Transaction on Intelligent Transportation Systems, Vol. 12, No. 1, pp. 83-96. https://doi.org/10.1109/TITS.2010.2073466
  8. Kim, E. M., Cho, D. Y., Chong, K. S., and Kim, S. H. (2011), Efficient method for road sign database construction, Journal of the Korean Society for Geospatial Information System, Vol. 19, No. 3, pp. 91-98. (in Korean with English abstract)
  9. Lee, J. S. and Yun, D. G. (2013), The road traffic sign recognition and automatic positioning for road facility management, International Journal of Highway Engineering, Vol. 15, No. 1, pp. 151-161. (in Korean with English abstract) https://doi.org/10.7855/IJHE.2013.15.3.151
  10. Ministry of Land, Infrastructure and Transport (2009), Guideline for design and installation of road guidance, Ministry of Land, Infrastructure and Transport established regulation No.2009-125, pp. 8-9. (in Korean)
  11. Ministry of Land, Infrastructure and Transport (2012), Guideline for design and installation of road guidance: total amendment, Ministry of Land, Infrastructure and Transport established regulation No. 2012-232, pp. 2-4. (in Korean)
  12. Reina, A. V., Sastre, R. J. L., Arroyo, S. L., and Jimenez, P. G. (2006), Adaptive traffic road sign panels text extraction, Proceedings of the 5th WSEAS International Conference on Signal Processing, Robotics and Automation, 15-17 February, Madrid, Spain, pp. 295-300.
  13. Sastre, R. J. L., Arroyo, S. L., Siegmann, P., Jimenez, P. G., and Reina, A. V. (2005), Recognition of mandatory traffic signs using the hausdorff distance, Proceedings of the 5th WSEAS International Conference on Signal Processing, Computational Geometry & Artifical Vision, 15-17 September, Malta, pp. 216-221.
  14. Shi, J. and Tomasi, C. (1994), Good features to track, 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 21-23 June, Seattle, USA, pp. 593-600.
  15. Wu, W. and Yang, J. (2005), Detection of text on road signs from video, IEEE Transactions on Intelligent Transportation Systems, Vol. 6, No. 4, pp. 378-390. https://doi.org/10.1109/TITS.2005.858619
  16. Vavilin A. and Jo, K. H. (2006), Road guidance sign recognition in urban areas by structure, The 1st International Forum on Strategic Technology, 18-20 October, Ulsan, Korea, pp. 293-296.
  17. Vavilin A. and Jo, K. H. (2009), Graph-based approach for robust road guidance sign recognition from differently exposed images, Journal of Universal Computer Science, Vol. 15, No. 4, pp. 786-804.
  18. Yang, X. (2013), Enhancement for road sign images and its performance evaluation, Optik - International Jounal for Light and Electron Optics, Vol. 124, No. 14, pp. 1957-1960. https://doi.org/10.1016/j.ijleo.2012.06.015

피인용 문헌

  1. A Methodology for Standard Establishment of Spatial Impact Zone according to Place Names of Road Sign in Urban Regions vol.15, pp.6, 2016, https://doi.org/10.12815/kits.2016.15.6.001
  2. Automatic Extraction of Route Information from Road Sign Imagery vol.33, pp.6, 2013, https://doi.org/10.7848/ksgpc.2015.33.6.595
  3. GUI기반 산업용 디지털 기기의 측정값 인식 시스템 vol.20, pp.5, 2013, https://doi.org/10.12673/jant.2016.20.5.496
  4. Shell Template Offset 도면을 활용한 선체 곡판 형상 복원 방법에 관한 연구 vol.56, pp.1, 2013, https://doi.org/10.3744/snak.2019.56.1.066