DOI QR코드

DOI QR Code

Groundwater inflow rate estimation considering excavation-induced permeability reduction in the vicinity of a tunnel

터널 굴착으로 인한 터널인접 절리암반 투수계수 감소를 고려한 터널 내 지하수 유입량 산정방법

  • Moon, Joon-Shik (Dept. of Civil Engineering, Kyungpook National University)
  • 문준식 (경북대학교 공과대학 토목공학과)
  • Received : 2013.05.03
  • Accepted : 2013.05.27
  • Published : 2013.05.31

Abstract

This paper discussed about the effect of permeability reduction of the jointed rock mass in the vicinity of a tunnel which is one of the reasons making large difference between the estimated ground-water inflow rate and the measured value. Current practice assumes that the jointed rock mass around a tunnel is a homogeneous, isotropic porous medium with constant permeability. However, in actual condition the permeability of a jointed rock mass varies with the change of effective stress condition around a tunnel, and in turn effective stress condition is affected by the ground water flow in the jointed rock mass around the tunnel. In short time after tunnel excavation, large increase of effective tangential stress around a tunnel due to stress concentration and pore-water pressure drop, and consequently large joint closure followed by significant permeability reduction of jointed rock mass in the vicinity of a tunnel takes place. A significant pore-water pressure drop takes place across this ring zone in the vicinity of a tunnel, and the actual pore-water pressure distribution around a tunnel shows large difference from the value estimated by an analytical solution assuming the jointed rock mass around the tunnel as a homogeneous, isotropic medium. This paper presents the analytical solution estimating pore-water pressure distribution and ground-water inflow rate into a tunnel based on the concept of hydro-mechanically coupled behavior of a jointed rock mass and the solution is verified by numerical analysis.

본 연구에서는 절리 암반 내 터널굴착 시 지하수 유출량 예측량이 실제 계측치와 큰 차이가 나는 이유 중 하나인 터널주변 절리암반의 투수계수의 감소 현상에 대해 논의하였다. 현재 터널 설계 시 일반적으로 사용되고 있는 지하수 유출량 산정식은 터널주변 암반이 등방, 균질하고 일정한 투수계수를 유지한다고 가정한다. 하지만, 실제로는 터널주변 절리암반의 투수계수는 터널주변 유효응력 상태에 따라 변화하며, 절리 내 지하수 흐름에 따라 다시 터널주변 유효응력 분포가 영향을 받는 수리-역학적 상호거동을 보인다. 터널굴착 직후 터널 접선방향 유효응력이 응력집중과 간극수압 감소로 인해 급증하고 그에 따라 절리의 닫힘현상이 발생하며, 결과적으로 터널인접 절리암반 링 구간에서 투수계수가 급격히 감소하게 된다. 이러한 터널인접 링 구간 내에서 상당히 큰 간극수압 감소가 발생하게 되어 터널주변 간극수압 분포는 등방 균질의 절리암반으로 가정한 산정식과 큰 차이를 보인다. 본 연구에서는 절리암반의 수리-역학적 상호거동의 개념을 도입하여 터널주변 간극수압 분포와 터널 내 지하수 유입량 산정방법을 제안하고 이를 수치해석을 통해 검증하였다.

Keywords

References

  1. Alvarez, T.A, Cording, E.J., Mikhail, R. (1995), "Hydromechnical behavior of rock joints, A re-interpretation of published experiments", Proc. 35th U.S. Symposium on Rock Mechanics, Daemen & Schultz, Eds., pp. 665-671.
  2. Bandis, S.C., Lumsden, A.C., Barton, N. (1983), "Fundamentals of rock joint deformation", Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 20, No. 6, pp. 249-268. https://doi.org/10.1016/0148-9062(83)90595-8
  3. Barton, N., Bandis, S. (1982), "Effects of block size on the shear behavior of jointed rock", 23rd U.S. Symp. on Rock Mechanics, Keynote Lecture, Univ. of California, Berkeley.
  4. Buehler, Ch., Heitz, D., Trick, Th., Frieg, B. (2003), "In situ Self-Sealing of the EDZ as a consequence of loading, impact of the excavation disturbed or damaged zone (EDZ) onthe performance of radioactive waste geological repositories", A European Commission CLUSTER Conference and Workshop, Luxembourg, 3 to 5 November 2003.
  5. Fernandez, G., Alvarez, T.A. (1994), "Seepageinduced effective stresses and water pressures around pressure tunnels", Journal of Geotechnical Engineering, Vol. 120, No. 1, pp. 108-128. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:1(108)
  6. Gale, J.E., Raven, K.G. (1980), "Effect of sample size on stress-permeability relationship for national fractures", Technical Information Report No. 48, LBL-11865, SAC-48, UC-70.
  7. Goodman, R.E. (1974), "The mechanical properties of joints", Proc. 3rd Congr. ISRM, Denver, Vol. 1A, pp. 127-140.
  8. Goodman, R.E., Moye, D.G., Van Schalkwyk, A., and Javandel, I. (1965), "Groundwater inflows during tunnel driving", Eng. Geol., Vol. 2, No. 1, pp. 39-56.
  9. Harr, M.E. (1962), Groundwater and Seepage, Chap. 10, pp. 249-264.
  10. Heuer, R.E. (1995), "Estimating rock tunnel water inflow", Rapid Excavation and Tunneling Conference, Chap. 3, pp. 41-60.
  11. Heuer, R.E. (2005), "Estimating rock tunnel water inflow", Rapid Excavation and Tunneling Conference, Chap. 3, pp. 41-60.
  12. Iwai, K. (1976), Fundamental Studies of Fluid Flow Through a Sigle Fracture, Ph.D. Thesis, Univ. of California, Berkeley, p. 208.
  13. Pusch, R., Borgesson, L., Ramqvist, G. (2003a), "Hydraulic characterization of EDZ in a blasted tunnel in crystalline rock-Measurements and excavation, impact of the excavation disturbed or damaged zone (EDZ) on the performance of radioactive waste geological repositories", A European Commission CLUSTER Conference and Workshop, Luxembourg.
  14. Pusch, R., Liedtke, L. (2003b), "EDZ formation in crystalline rock by TBM drilling and related alteration of hydraulic conductivity, impact of the excavation disturbed or damaged zone (EDZ) on the performance of radioactive waste geological repositories", A European Commission CLUSTER Conference and Workshop, Luxembourg.
  15. Snow, D.T. (1972), "Fundamentals and in-situ determination of hydraulic conductivity", Proc. Symp. On Percolation Through Fissured Rock.
  16. Zhang, L., Franklin, J.A. (1993) "Prediction of water flow into rock tunnels: an analytical solution assuming an hydraulic conductivity gradient", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstract, Vo. 30, No. 1, pp. 37-46. https://doi.org/10.1016/0148-9062(93)90174-C