DOI QR코드

DOI QR Code

A numerical study on the characteristics of the smoke movement and the effects of structure in road tunnel fire

도로터널 화재시 연기의 전파특성과 구조체에 미치는 영향에 관한 수치 해석적 연구

  • Received : 2013.04.29
  • Accepted : 2013.05.21
  • Published : 2013.05.31

Abstract

This study numerically considered the characteristic of smoke movement and the effect of hot smoke gas on tunnel wall surface temperature during road tunnel fire under boundary condition of fire growth curve that is applied to fire analysis in road tunnels. The maximum heat release rate were 20 MW and 100 MW and tunnel air velocities were 2.5 m/s and velocity induced by thermal buoyancy respectively, also the cooling effect of tunnel wall was considered. As results, when tunnel air velocity was constant at 2.5 m/s during tunnel fire, due to the cooling effect of tunnel wall, the smoke layer was rapidly descent after some distance and it flowed the same patterns at the downstream. When heat release rate was 100 MW (and jet fan was not installed), the maximum temperature of tunnel wall surface has risen up to $615^{\circ}C$. The heat transfer coefficient of tunnel wall surface was varied from 13 to $23W/m^2^{\circ}C$ approximately.

본 연구에서는 도로터널 화재해석에 적용하는 화재성장곡선을 적용하여 도로터널 화재시 열기류의 전파특성과 터널벽면에 미치는 열적특성을 수치 해석적으로 고찰하였다. 최대화재강도는 20, 100 MW로 하였으며, 터널내 풍속은 2.5 m/s로 유지하는 경우와 열부력에 의한 풍속으로 하는 경우에 대해서 터널연장 및 경사도에 따른 연기의 전파특성을 분석하고 열기류가 벽체에 미치는 영향을 평가하기 위해서 벽체표면온도와 벽체표면 열전달계수를 분석하였다. 터널내 열기류는 풍속을 2.5 m/s로 하는 경우에 벽체의 냉각효과에 의해서 일정거리 이후에는 급격하게 하강하여 하류까지 동일한 양상으로 흐르는 특성을 보이고 있으며, 벽체표면의 최대온도는 화재강도가 100 MW일 경우에 최대 $615^{\circ}C$까지 상승하고 있으며, 표면온도가 $380^{\circ}C$를 초과하는 면적은 아주 작은 것으로 나타나고 있다. 벽체의 표면열전달계수는 화재강도 및 터널내 풍속에 따라서 변하며 약 $13{\sim}23W/m^{\circ}C$의 범위에 있는 것으로 나타났다.

Keywords

References

  1. MLIT (2010), http://stat.molt.go.kr/portal/cate/statview.do, "Road bridge and Tunnel, Seoul.
  2. Center for Underground Fire and Environmental Research (2004), Report of Daegu Subway Fire Investigation & Research, Kyungppok National Univ., Civil Environmental LAB.
  3. Minister of the Interior, Ministry of Equipment, Transportation and Housing (1999), TASK FORCE FOR TECHNICAL INVESTIGATION OF THE 24 MARCH 1999 FIRE IN THE MONT BLANC VEHICULAR TUNNEL, French
  4. NEMA, National Fire Data system (2013), http://nfds.go.kr/fr_base_001.jsf, Seoul
  5. MLIT (2009), Design and Management for Road Tunnel Fire Protection, MLIT, Seoul.
  6. Chang, S.H., Choi, S.W., Yoon, T. (2008), "Change of material properties of underground structures by fire", Infrastructure safety 32, 2008 winter, pp. 32-63.
  7. International Tunnelling Association (2004), Guidelines for structural fire resistance for road tunnels, Working Group No. 6, ITA.

Cited by

  1. An Experimental Study on Smoke Movement by the External Wind in Road Tunnel Fires vol.24, pp.4, 2014, https://doi.org/10.7474/TUS.2014.24.4.308
  2. A numerical study on effects of thermal buoyance force on number of jet fans for smoke control vol.15, pp.3, 2013, https://doi.org/10.9711/KTAJ.2013.15.3.301
  3. A Study on the Delay Effect of Smoke Diffusion by the Installation Intervals and the Blockage Ratio of the Fire Smoke Diffusion Delay Device in a Great Depth Underground Double-Deck Tunnel vol.55, pp.6, 2018, https://doi.org/10.32390/ksmer.2018.55.6.596