EAMAMNRFMAATS=2X| M7H M1E (K7-1-8)
Webkit ZrH 9 B2Ro-2]9] A5 e $13 7Y A7
25z w3l
A Study of High Performance WebKit Mobile Web Browser
Cheong Ghil Kim" Regular Members
R Ok .

Fad 71502 Ahe FiL g

9lom AFER= B

PC 9] a5}l *QE% 7IEH0}L f?i*e‘Olﬂ‘r ﬂ?]E(WebKlt)“ %24 F=R o] =(Android) EHEo AR AL Q= §) Behs
AE e b 7S AlEshs 8F A2 8 Zrad Ty Yot & E=EelA e WebKlt go] B2l o] kel WAz
£ B8 A% P4 71N Akelarh. Ak WA JMe JPEG olu el HEH o, % A5 PC VNl A8 g
Eojel o171% AHE] W QSIS A SRS A% RS ASAT, AT A4 A W e
ol71F A58 4] ukd Y= V7R HEs T e FE TS BTl

Key Words : web browser; parallel programming; heterogeneous computing; Android; WebKit.

ABSTRACT.

As the growing popularity of smartphones, mobile web browsing has become one of the most important and popular
applications in mobile devices. Furthermore, it is clear that the demand for PC-like full browser performance on mobile
devices is increasing greatly. WebKit is an open source web browser engine adopted by Google Android. This paper
proposed a technique of increasing the performance of WebKit by paralleling its libraries. This method was applied to JPEG
library and the performance evaluation was conducted in PC environment. The results was used to estimate the performance
prediction on multi-core mobile embedded architecture and to show the feasibility of the proposed method to estimate the

performance gain on heterogeneous multi-core embedded architecture.

I. Introduction

Nowadays, mobile computing is experiencing an
unprecedented rise and the mobile industry already
talks about 50 billion interconnected devices in 2020
[11.

smartphones, mobile web browsing has become one

In accordance with growing popularity of

of the most important and popular applications in
smartphones. However, web browsers were designed
for a PC application at the beginning; therefore they
have to be reconsidered with great care for
optimization on mobile devices having less computing
resource and more power constraints than PCs.
Generally, webpage processing 1is known as
CPU-bound work, and on the same wireless network

the load time of a web page is 9x slower on the

handheld [2]. However, the problem is that the demand
for PC-like full browser performance on mobile devices
is increasing greatly.

The

architecture

of CPU

in mobile devices is that multi-core

important movement future
CPUs have become the dominant alternative solution

for improving its performance due to power
constraints, and dedicated accelerator processors have
been integrated into one chip [3]. This movement
already introduced dual core mobile devices and it is
expected that mobile devices with up to 8 parallel
hardware contexts will be introduced in the near
the of

techniques

future. Therefore, importance parallel

computing incorporating multiple
processing cores and other acceleration technologies

are increasing.

% o] B he 20119% GAgTtE Wiyl Aol ojate] Agle.

"gAgEn AEE sy (cgkim@nsu.ac.kr),
2=z} ;2012 39 179

], LR YAL 1 20129 39 28%, FAAR

48

%

Az} 20124 69 19¢

WebKit 2HIY ¥ H2t2X 9| ds

To
approaches have been introduced on the work of

improve browser performance, several
Berkeley Parallelism Lab [4], Their works are mostly

concentrated on CSS selector matching, layout

solving, and font rendering based on hardware
parallelism [2]. In this paper, we exploit parallelism in
processing WebKit [5] JPEG library by programming
DCT with OpenCL and estimate the feasibility of
possible performance improvement on mobile
platforms.

This paper is structured as follows. Section 2
overviews the structure of WebKit and its parallel
approach. Section 3 introduces our paralleling DCT
CPUs and GPGPUs, the
integration of it with WebKit JPEG library. Section 4

shows the simulation results with feasibility study.

for multi-core and

Finally, Section 5 covers the conclusion.

I. Background

At the beginning, the function of web browsers
was just rendering hyper-linked documents; and then
JavaScript was introduced to enable scripting of
by
dynamically modifying the document [2]. WebKit is

simple animations and content transitions
an open source web browser engine and well-suited
for mobile devices. Therefore, it is used as the default
browser for mobile operating systems: i0S, Android,
BlackBerry Tablet OS, and webOS. WebKit provides
both

systems. In general, browsers are large and complex

layout and JavaScript engines for many
with over 5 million lines of code.

Fig. 1 shows the overall data flow in web browser
[2]. Loading an HTML page sets off a cascade of
events: the page is scanned, parsed, and compiled into
a document object model (DOM), an abstract syntax
tree of the document. Content referenced by URLs is
fetched and added to the DOM tree. As the content
necessary to display the page becomes available, the
page layout is (incrementally) solved and drawn to
the screen. After the initial page load, scripts respond
to events generated by wuser input and server
messages, typically modifying the DOM. This may, in
turn, cause the page layout to be recomputed and
redrawn [2].

49

Web server€— — —

Request html, images,
css, scripts, app data

decode
image

Mouse,
keyboard

Web server

layout

-

Fig. 1. Data flow of web browser

render |

In the figure, we can understand the information on
The

parallel web browser research [6] tries to enhance

processing flow and functional components.
inefficiency of current web browser by exploiting
parallelism in most core functional components like
parsing, scripting, and layout [2]. As pointed out in
[4], other parallel approaches on libraries of WebKit
can be realized greatly when taking advantage of
current modern CPU architecture.

Currently, the performance of modern mobile
devices are increasing greatly; Especially, the big
CPU

Single-core performance scaling is coming to an end

change comes form mobile architecture.
because fundamental laws of physics limit further
performance gains from uniprocessor architectures
[3]. Therefore, all future computing platforms will
provide multiple cores. The good news for embedded
systems 1is that multi-core processors are more
energy—efficient.

Under the new hardware architecture, there are
several approaches on accelerating web browsers,
sometimes using parallel languages such as OpenCL
(Open Computing Language) [8] - an open standard
for parallel programming of heterogeneous systems
and WebCL - heterogeneous parallel computing in
HTML5 web browsers. The major motivation is that
the

Especially on mobile devices, web pages load too

web browser is a CPU-intensive program.

slowly, expending significant time in processing a

document’s appearance.

Il. Accelerating Web Browser

To accelerate web browser on heterogeneous

0x

FMLATFE=2X] M7EH MiZE

multi-core architecture, it may be difficult to parallel
every possible step of web browser engine because
web browser execution pipeline causes dependency
among each part of browser engine such as lexer,
parser, layout, and so on. Furthermore, some of them
are inherently sequential so it is nearly impossible to
parallel [6].

In this paper, we tried to parallel WebKit JEPG
library which could be one of computationally
intensive modules of browser engine. As shown in
Fig. 1, image decoding and rendering could slow
down any web page loading time when there are too
many or heavy images because the latency ratio is
getting longer as the increased images overheads
shown in Fig. 2. This figure shows the latency ratios
of loading time of the web page with images of
different size and number. Therefore, it could be a
solution of improving WebKit performance by
paralleling JPEG decoding library. For this purpose,
this paper takes 2D DCT (two dimensional discrete
cosine transform) algorithm, the most computational

intensive part of JPEG decoding.

1700

IMESM E10M

rtffE

Number of images (X10)

1.600

1.500

1400

1300

1.200

1100

1.000

0.500

0.800

Latency ratic of page loading time

Fig. 2. Data flow of web browser

2D DCT can be described as a transform from a
2D matrix of pixels to that of spatial frequency
information. The transformed matrix contains many
that the
compression of such data using standard techniques

small values or zero entries, such

becomes very straightforward. For an input matrix
x(m, n) and an output matrix z(k, 1) with {0 < m, n,

k, 1 < N-1}, the forward N x N 2D DCT is defined

as

N—IN—1 (2m+ 1>7Tk
X (m,n)cos cos

z(k,0) = o

2 a(k)all)

m=0n=0

where

50

Equation (1) can be rewritten in matrix form as

Z=AXAT (2)

where X is the source pixel (spatial domain) data, Z
is the DCT output coefficients (frequency domain),

and A is an orthogonal matrix defined as

(2v+1)7u

. (3)

la(u)cos

alu,v) = i

There are many fast 2D DCT algorithms already
studied. We implemented several algorithms and
estimated its runtime on multi-core CPU and GPU
that data
parallelism can be fully exploited on CPU and GPU
architecture [8,9]. After that we integrated GPU
empowered DCT with WebKit JPEG library. Data
structure and procedure routines in JPEG library are

environments. Experiments show

quite optimized well on sequential processor because
of performance issues. It computes DCT one row of
blocks in image each step and it is not very good idea
on multi-processor programming. Especially GPU has
huge data transfer overhead so it is recommended to
deliver all data to GPU.

IV. Simulation Result

. Future heterogeneous embedded architecture
may consist of ARM multi-core CPU and other
including GPU for

power-consumption, and performance. For feasibility

dedicated processors cost,
simulation, we first took a high level approach.
Because there is no openCL enabled embedded device,
we have to predict possible performance achievement.
Our experimental environment with three different
configuration of desktop PC, single-core embedded
hardware, and multi-core embedded hardware are
summarized in Table 1.

The simulation results of OpenCL DCT execution
time are shown in Table 2. Because there is no
openCL support for embedded hardware, we have to
predict execution time of openCL DCT benchmark.
Desktop GPU showed 5x - 10x faster performance
than embedded GPU. If we apply this fact to predict
execution time of openCL benchmark, dual-core
embedded hardware’s execution time will be 0.135

sec, which is 185x faster. Measured execution time

AL

WebKit 2HIQ ¢ Hat2xo| M&s Skl

o9t
o

d0
g
N
It
re
4

shows that desktop GPU is 5x-10x faster than
embedded GPUs.

performance on S5PV310, we can guess

If we apply 5 times slower
that

execution time will be about 0.012 seconds.

Table 1. Hardware configuration

Here, the second parallel DCT runtime measurement
is from graphic hardware profiler that is more

accurate and measure time spent only on GPU.

Sequential DCT
CbCr Y

Parallel DCT{H/W counter)
CbCr| ¥

Farallel DCT{profiler)
CbCr| ¥

Total Total |Speedup) Total [Speedup]

Desktop PC 256x256 163 1409 | 3041 816 638 | 1474 206 303 173 | 478 639
N 512%512 6570 [5449 | 12028 || 1714 [1458 | 3172 379 758 | 523 [1281 939
Hardware Software 1200x1200(37412 | 30500 | 67912 ([4894 | 4670 | 9564 710 2936 | 2636 | 5572 1219
Intel Xeon Quad Ubuntu Linux 10.10 . . K . . K
CPU Core 3.07GHz 0S L Kernel © 2635 Fig. 2. Simulations on various sizes of images
re O.! bi Inux nernel .- 2.0.00
NVIDIA Quadro 60, 1GHz, ~ 96 Cuda cores i . i
aPU Maximum Power Consumption : 40W According to profile result [10] shown in Table 3,
GPU Memory Specs: 1GB DDR3, 128-bit, 25.6GB/s data transfer spends about 3x more time than kernel
RAM 4GB File System EXT4 computation does. In desktop environment,
Single-core _embedded hardware communication between CPU and GPU is done via
Hardware Software . .) .
- Ao 22 PCI channel which is quite slower than accessing
XA Ol o
CPu Single-Core 05 Froyo main memory. In embedded system, CPU and GPU
GPU PowerVR SGX 540 are usually on same ship and share memory so that
RAM More than 128MB File NES we can mitigate data transfer overhead.
System
Multi-core embedded hardware Table 3. Data transfer
Hardware Software
Android 23 Total Satge 256x256 512x512 1200x1200
Ol o
CPU Cortex-A9 Dual-core | OS .
Ginzerbread clCreateBuffer 101 230 530
GPu Mali 400 memcpy (temporary buffer) 49 171 42
) FAT/EXT4
RAM More than 128MB File System SD o cISerKernel Arg 19 27 6l
clEnqueueWriteBuffer(memc
%3 2766 7572
pyHtoD)
Table 2, OpenCL DCT execution time clEnqueueNDRangeKernel(C
. 808 1766 5018
Serial OpenCL | OpenCL Benchmark bCr _space)
Desktop PC 5625 0.0027 0.0074 c‘lEnqueueNDRangeKemel(Y 694 1462 4690
S5PV210 50.356 N/A 0071 space)
S5PV310 24.998 N/A 0.04 clEnqueueReadBuffer 2158 3547 12602
encode_mcu(writing ~ DCT
) .)) . .) 1831 4636 20892
Fig. 2 shows simulation results with various sizes restlt)
. - -
of images in only DCT computation part of JPEG Total time 6673 14605 51909

library and the performance achieved 6x — 12x speed
up. The algorithm used in JPEG library is fast DCT
algorithm using row and column scanning; therefore
speed up we make is reasonable when we compare it
the
second parallel DCT runtime measurement is from

to previous DCT experimental result. Here,

graphic hardware profiler that is more accurate and
measure time spent only on GPU.

Fig. 2 shows simulation results with various sizes
of images in only DCT computation part of JPEG
library and the performance achieved 6x — 12x speed
up. The algorithm used in JPEG library is fast DCT
algorithm using row and column scanning; therefore,
the speed up we make is reasonable when we

compare it to previous DCT experimental result.

51

Also we can speed up current version of JPEG
library on desktop hardware environment which has
large amount of data transfer overhead. Current
graphic hardware support 2 simultaneous data
transfer. When we apply pipeline data transfer, we
can reduce data communication overhead to half. We
pipeline data write, kernel computation and data read.
Like our case, if kernel computation is smaller than
data transfer, we can add more computation for free
like quantization step in JPEG library. Also CPU
computing resource can be exploited during GPU

computation.

0x

FLULATAE|=2X] M7 M1

V. Conclusion

This paper explores the performance model of
of WebKit JPEG

accelerating web browser by measuring execution

parallel programming for
time. For our simulation, we implemented the fast
DCT algorithm on various computing environments.
The evaluation results show the feasibility of the
proposed method to estimate the performance gain on

heterogeneous embedded architecture.

o2

24

[1] http://news.cnet.com/8301-13506_3-20051610-17 .html.

[2] L. A. Meyerovich and R. Bodik, "Fast and parallel webpage
layout,” Proceedings of the 19th international conference on
World wide web, pp. 711-720, 2010.

[3] C. G. Kim, D. H Lee, and J. Kim, "Optimizing Image

Processing on Multi-core CPUs with Intel Parallel

Programming Technologies,” Multimedia Tools and

Applications, DOL 10.1007/s11042-011-0906~y, Nov. 2011.

Leo Meyerovich, “Rethinking Browser Performance,

USENIX, login, vol 34, no. 4, pp. 14-20, Aug. 2009.

[5] http://www.webkit.org

[6] C. G. Jones, R. Liu, L. Meyerovich, K. Asanovic, and R.
Bodik, "Parallelizing the Web Browser,” HotPar'09
Proceedings of the First USENIX conference on Hot topics
in parallelism, pp.7-7 2009.

(4]

[7] C. Lemuet, J. Sampson, J. Francois, and N. Jouppi, “The
potential energy efficiency of vector acceleration,”
Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, pp. 0-1, 2006.

[8] C. G. Kim and Y. S. Choi, "A High Performance Parallel
DCT with OpenCL on Heterogeneous Computing
Environment,” Multimedia Tools and Applications, DOI
10.1007/s11042-012-1028-x . Feh. 2012.

[9] J. G. Hong, J. S. Wook, C. G. Kim, and B. Burgstaller
“Accelerating 2D DCT in Multi-core and Many-core
Environments,” In Proc. Of the 35th Conference of Korea
Information Processing Society, May 2011.

[10] J. Leskela, J. Nikula, and M. Salmela, “OpenCL embedded
profile prototype in mobile device,” IEEE Workshop on
Signal Processing Systems, 2009. SiPS 2009. pp. 279-2&4,
Oct. 2009.

52

Z! (Cheong Ghil Kim) Ha|§
S - 19873 : Univ. of Redlands, US.A. 7
FE A3 =Y

20034 : AAelstaL e vet Fet
A2}
- 2006 ¢ QAlTSk 717 E)t 3ot
upa}
- 200651°2007) : ATt e Ak} wALF AT
- 20070720084 : Al taL P FE AL} A
2008 7HA A LuekaL 7 FE ok} Zas

<HAEoR> T HEw
Zrkel AR

el JEltE AZE, ol7]1F HHY

’

