
48

WebKit 모바일 웹 브라우저의 성능 향상을 위한 기법 연구

김정길* 정회원

A Study of High Performance WebKit Mobile Web Browser

Cheong Ghil Kim* Regular Members

요 약
스마트폰의 급속한 보급 확산에 따라 모바일 기기에서 웹 브라우저는 주요한 기능으로 자리 잡고 있으며 사용자는 모바일 기기에서

PC 수준의 고속화된 성능을 기대하는 현실이다. 웹키트(WebKit)는 구글의 안드로이드(Android) 플랫폼에 사용되고 있는 웹 브라우

저를 만드는 데 기반을 제공하는 오픈 소스 응용 프로그램 프레임워크이다. 본 논문에서는 WebKit 라이브러리의 연산의 병렬처리

를 통한 성능 향상 기법을 제안하였다. 제안된 병렬처리 기법은 JPEG 라이브러리에 적용되었으며, 성능 검증은 PC 기반의 실험을

통하여 이기종 컴퓨팅 기반의 모바일 임베디드 시스템 환경에서의 예측 방법을 사용하였다. 실험 결과는 제안된 병렬화 기법이

이기종 컴퓨팅 환경의 모바일 임베디드 기기로의 적용을 통한 성능 향상 가능성을 보여주었다.

Key Words : web browser; parallel programming; heterogeneous computing; Android; WebKit.

ABSTRACT
As the growing popularity of smartphones, mobile web browsing has become one of the most important and popular
applications in mobile devices. Furthermore, it is clear that the demand for PC-like full browser performance on mobile
devices is increasing greatly. WebKit is an open source web browser engine adopted by Google Android. This paper
proposed a technique of increasing the performance of WebKit by paralleling its libraries. This method was applied to JPEG
library and the performance evaluation was conducted in PC environment. The results was used to estimate the performance
prediction on multi-core mobile embedded architecture and to show the feasibility of the proposed method to estimate the
performance gain on heterogeneous multi-core embedded architecture.

※ 이 본 논문은 2011년도 남서울대학교 교내연구비 지원에 의하여 연구되었음.
*남서울대학교 컴퓨터학과 (cgkim@nsu.ac.kr),
접수일자 : 2012년 3월 17일, 수정완료일자 : 2012년 3월 28일, 최종게재확정일자 : 2012년 6월 19일

I. Introduction

Nowadays, mobile computing is experiencing an

unprecedented rise and the mobile industry already

talks about 50 billion interconnected devices in 2020

[1]. In accordance with growing popularity of

smartphones, mobile web browsing has become one

of the most important and popular applications in

smartphones. However, web browsers were designed

for a PC application at the beginning; therefore they

have to be reconsidered with great care for

optimization on mobile devices having less computing

resource and more power constraints than PCs.

Generally, webpage processing is known as

CPU-bound work, and on the same wireless network

the load time of a web page is 9x slower on the

handheld [2]. However, the problem is that the demand

for PC-like full browser performance on mobile devices

is increasing greatly.

The important movement of future CPU

architecture in mobile devices is that multi-core

CPUs have become the dominant alternative solution

for improving its performance due to power

constraints, and dedicated accelerator processors have

been integrated into one chip [3]. This movement

already introduced dual core mobile devices and it is

expected that mobile devices with up to 8 parallel

hardware contexts will be introduced in the near

future. Therefore, the importance of parallel

computing techniques incorporating multiple

processing cores and other acceleration technologies

are increasing.

통신위성우주산업연구회논문지 제7권 제1호 (K7-1-8)

WebKit 모바일 웹 브라우저의 성능 향상을 위한 기법 연구

49

To improve browser performance, several

approaches have been introduced on the work of

Berkeley Parallelism Lab [4], Their works are mostly

concentrated on CSS selector matching, layout

solving, and font rendering based on hardware

parallelism [2]. In this paper, we exploit parallelism in

processing WebKit [5] JPEG library by programming

DCT with OpenCL and estimate the feasibility of

possible performance improvement on mobile

platforms.

This paper is structured as follows. Section 2

overviews the structure of WebKit and its parallel

approach. Section 3 introduces our paralleling DCT

for multi-core CPUs and GPGPUs, and the

integration of it with WebKit JPEG library. Section 4

shows the simulation results with feasibility study.

Finally, Section 5 covers the conclusion.

Ⅱ. Background

At the beginning, the function of web browsers

was just rendering hyper-linked documents; and then

JavaScript was introduced to enable scripting of

simple animations and content transitions by

dynamically modifying the document [2]. WebKit is

an open source web browser engine and well-suited

for mobile devices. Therefore, it is used as the default

browser for mobile operating systems: iOS, Android,

BlackBerry Tablet OS, and webOS. WebKit provides

both layout and JavaScript engines for many

systems. In general, browsers are large and complex

with over 5 million lines of code.

Fig. 1 shows the overall data flow in web browser

[2]. Loading an HTML page sets off a cascade of

events: the page is scanned, parsed, and compiled into

a document object model (DOM), an abstract syntax

tree of the document. Content referenced by URLs is

fetched and added to the DOM tree. As the content

necessary to display the page becomes available, the

page layout is (incrementally) solved and drawn to

the screen. After the initial page load, scripts respond

to events generated by user input and server

messages, typically modifying the DOM. This may, in

turn, cause the page layout to be recomputed and

redrawn [2].

Fig. 1. Data flow of web browser

In the figure, we can understand the information on

processing flow and functional components. The

parallel web browser research [6] tries to enhance

inefficiency of current web browser by exploiting

parallelism in most core functional components like

parsing, scripting, and layout [2]. As pointed out in

[4], other parallel approaches on libraries of WebKit

can be realized greatly when taking advantage of

current modern CPU architecture.

Currently, the performance of modern mobile

devices are increasing greatly; Especially, the big

change comes form mobile CPU architecture.

Single-core performance scaling is coming to an end

because fundamental laws of physics limit further

performance gains from uniprocessor architectures

[3]. Therefore, all future computing platforms will

provide multiple cores. The good news for embedded

systems is that multi-core processors are more

energy-efficient.

 Under the new hardware architecture, there are

several approaches on accelerating web browsers,

sometimes using parallel languages such as OpenCL

(Open Computing Language) [8] - an open standard

for parallel programming of heterogeneous systems

and WebCL - heterogeneous parallel computing in

HTML5 web browsers. The major motivation is that

the web browser is a CPU-intensive program.

Especially on mobile devices, web pages load too

slowly, expending significant time in processing a

document's appearance.

Ⅲ. Accelerating Web Browser

To accelerate web browser on heterogeneous

통신위성우주산업연구회논문지 제7권 제1호

50

    








 




  


 



    

multi-core architecture, it may be difficult to parallel

every possible step of web browser engine because

web browser execution pipeline causes dependency

among each part of browser engine such as lexer,

parser, layout, and so on. Furthermore, some of them

are inherently sequential so it is nearly impossible to

parallel [6].

In this paper, we tried to parallel WebKit JEPG

library which could be one of computationally

intensive modules of browser engine. As shown in

Fig. 1, image decoding and rendering could slow

down any web page loading time when there are too

many or heavy images because the latency ratio is

getting longer as the increased images overheads

shown in Fig. 2. This figure shows the latency ratios

of loading time of the web page with images of

different size and number. Therefore, it could be a

solution of improving WebKit performance by

paralleling JPEG decoding library. For this purpose,

this paper takes 2D DCT (two dimensional discrete

cosine transform) algorithm, the most computational

intensive part of JPEG decoding.

Fig. 2. Data flow of web browser

2D DCT can be described as a transform from a

2D matrix of pixels to that of spatial frequency

information. The transformed matrix contains many

small values or zero entries, such that the

compression of such data using standard techniques

becomes very straightforward. For an input matrix

x(m, n) and an output matrix z(k, l) with {0 ≤ m, n,

k, l ≤ N-1}, the forward N × N 2D DCT is defined

as

where

Equation (1) can be rewritten in matrix form as

where X is the source pixel (spatial domain) data, Z

is the DCT output coefficients (frequency domain),

and A is an orthogonal matrix defined as

   



 

 


There are many fast 2D DCT algorithms already

studied. We implemented several algorithms and

estimated its runtime on multi-core CPU and GPU

environments. Experiments show that data

parallelism can be fully exploited on CPU and GPU

architecture [8,9]. After that we integrated GPU

empowered DCT with WebKit JPEG library. Data

structure and procedure routines in JPEG library are

quite optimized well on sequential processor because

of performance issues. It computes DCT one row of

blocks in image each step and it is not very good idea

on multi-processor programming. Especially GPU has

huge data transfer overhead so it is recommended to

deliver all data to GPU.

Ⅳ. Simulation Result

본 Future heterogeneous embedded architecture

may consist of ARM multi-core CPU and other

dedicated processors including GPU for cost,

power-consumption, and performance. For feasibility

simulation, we first took a high level approach.

Because there is no openCL enabled embedded device,

we have to predict possible performance achievement.

Our experimental environment with three different

configuration of desktop PC, single-core embedded

hardware, and multi-core embedded hardware are

summarized in Table 1.

The simulation results of OpenCL DCT execution

time are shown in Table 2. Because there is no

openCL support for embedded hardware, we have to

predict execution time of openCL DCT benchmark.

Desktop GPU showed 5x - 10x faster performance

than embedded GPU. If we apply this fact to predict

execution time of openCL benchmark, dual-core

embedded hardware’s execution time will be 0.135

sec, which is 185x faster. Measured execution time

WebKit 모바일 웹 브라우저의 성능 향상을 위한 기법 연구

51

Serial OpenCL OpenCL Benchmark

Desktop PC 5.625 0.0027 0.0074

S5PV210 59.356 N/A 0.071

S5PV310 24.998 N/A 0.04

shows that desktop GPU is 5x-10x faster than

embedded GPUs. If we apply 5 times slower

performance on S5PV310, we can guess that

execution time will be about 0.012 seconds.

Table 1. Hardware configuration

Desktop PC

Hardware Software

CPU
Intel Xeon Quad

Core 3.07GHz
OS

Ubuntu Linux 10.10

Linux Kernel : 2.6.35

GPU

NVIDIA Quadro 60, 1GHz, 96 Cuda cores

Maximum Power Consumption : 40W

GPU Memory Specs: 1GB DDR3, 128-bit, 25.6GB/s

RAM 4GB File System EXT4

Single-core embedded hardware

Hardware Software

CPU
Cortex-A8

Single-Core
OS

Android 2.2

Froyo

GPU PowerVR SGX 540

RAM More than 128MB
F i l e

System
NFS

Multi-core embedded hardware

Hardware Software

CPU Cortex-A9 Dual-core OS
Android 2.3

Ginzerbread

GPU Mali 400

RAM More than 128MB File System
FAT/EXT4

(SD/MMC)

Table 2. OpenCL DCT execution time

Fig. 2 shows simulation results with various sizes

of images in only DCT computation part of JPEG

library and the performance achieved 6x - 12x speed

up. The algorithm used in JPEG library is fast DCT

algorithm using row and column scanning; therefore

speed up we make is reasonable when we compare it

to previous DCT experimental result. Here, the

second parallel DCT runtime measurement is from

graphic hardware profiler that is more accurate and

measure time spent only on GPU.

Fig. 2 shows simulation results with various sizes

of images in only DCT computation part of JPEG

library and the performance achieved 6x - 12x speed

up. The algorithm used in JPEG library is fast DCT

algorithm using row and column scanning; therefore,

the speed up we make is reasonable when we

compare it to previous DCT experimental result.

Here, the second parallel DCT runtime measurement

is from graphic hardware profiler that is more

accurate and measure time spent only on GPU.

Fig. 2. Simulations on various sizes of images

According to profile result [10] shown in Table 3,

data transfer spends about 3x more time than kernel

computation does. In desktop environment,

communication between CPU and GPU is done via

PCI channel which is quite slower than accessing

main memory. In embedded system, CPU and GPU

are usually on same ship and share memory so that

we can mitigate data transfer overhead.

Table 3. Data transfer

Total Satge 256x256 512x512 1200x1200

clCreateBuffer 101 230 530

memcpy (temporary buffer) 49 171 542

clSerKernelArg 19 27 61

clEnqueueWriteBuffer(memc

pyHtoD)
963 2766 7572

clEnqueueNDRangeKernel(C

bCr space)
808 1766 5018

clEnqueueNDRangeKernel(Y

space)
694 1462 4692

clEnqueueReadBuffer 2158 3547 12602

encode_mcu(writing DCT

result)
1881 4636 20892

Total time 6673 14605 51909

Also we can speed up current version of JPEG

library on desktop hardware environment which has

large amount of data transfer overhead. Current

graphic hardware support 2 simultaneous data

transfer. When we apply pipeline data transfer, we

can reduce data communication overhead to half. We

pipeline data write, kernel computation and data read.

Like our case, if kernel computation is smaller than

data transfer, we can add more computation for free

like quantization step in JPEG library. Also CPU

computing resource can be exploited during GPU

computation.

통신위성우주산업연구회논문지 제7권 제1호

52

V. Conclusion

This paper explores the performance model of

parallel programming of WebKit JPEG for

accelerating web browser by measuring execution

time. For our simulation, we implemented the fast

DCT algorithm on various computing environments.

The evaluation results show the feasibility of the

proposed method to estimate the performance gain on

heterogeneous embedded architecture.

참 고 문 헌

[1] http://news.cnet.com/8301-13506_3-20051610-17 .html.

[2] L. A. Meyerovich and R. Bodik, "Fast and parallel webpage

layout," Proceedings of the 19th international conference on

World wide web, pp. 711-720, 2010.

[3] C. G. Kim, D. H. Lee, and J. Kim, "Optimizing Image

Processing on Multi-core CPUs with Intel Parallel

Programming Technologies," Multimedia Tools and

Applications, DOI: 10.1007/s11042-011-0906-y, Nov. 2011.

[4] Leo Meyerovich, “Rethinking Browser Performance,

USENIX, login, vol 34, no. 4, pp. 14-20, Aug. 2009.

[5] http://www.webkit.org

[6] C. G. Jones, R. Liu, L. Meyerovich, K. Asanovic, and R.

Bodik, "Parallelizing the Web Browser," HotPar'09

Proceedings of the First USENIX conference on Hot topics

in parallelism, pp.7-7 2009.

[7] C. Lemuet, J. Sampson, J. Francois, and N. Jouppi, “The

potential energy efficiency of vector acceleration,”

Proceedings of the 2006 ACM/IEEE conference on

Supercomputing, pp. 0-1, 2006.

[8] C. G. Kim and Y. S. Choi, "A High Performance Parallel

DCT with OpenCL on Heterogeneous Computing

Environment,“ Multimedia Tools and Applications, DOI

10.1007/s11042-012-1028-x . Feb. 2012.

[9] J. G. Hong, J. S. Wook, C. G. Kim, and B. Burgstaller

“Accelerating 2D DCT in Multi-core and Many-core

Environments,” In Proc. Of the 35th Conference of Korea

Information Processing Society, May 2011.

[10] J. Leskela, J. Nikula, and M. Salmela, “OpenCL embedded

profile prototype in mobile device,” IEEE Workshop on

Signal Processing Systems, 2009. SiPS 2009. pp. 279-284,

Oct. 2009.

저자

김 정 길 (Cheong Ghil Kim) 정회원

․1987년 : Univ. of Redlands, U.S.A. 컴

퓨터과학 학사졸업

․2003년 : 연세대학교 컴퓨터과학 공학

석사

․2006년 : 연세대학교 컴퓨터과학 공학

박사

․2006년~2007년：연세대학교 컴퓨터과학과 박사후연구원

․2007년~2008년：연세대학교 컴퓨터과학과 연구교수

․2008년~현재：남서울대학교 컴퓨터학과 조교수

 <관심분야> : 멀티미디어 임베디드 시스템, 이기종 컴퓨팅,

모바일 AR

