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Testing memory and repairing faults have become 
increasingly important for improving yield. Redundancy 
analysis (RA) algorithms have been developed to repair 
memory faults. However, many RA algorithms have low 
analysis speeds and occupy memory space within automatic 
test equipment. A fast RA algorithm using simple calculations 
is proposed in this letter to minimize both the test and repair 
time. This analysis uses the grouped addresses in the faulty 
bitmap. Since the fault groups are independent of each other, 
the time needed to find solutions can be greatly reduced using 
these fault groups. Also, the proposed algorithm does not need 
to store searching trees, thereby minimizing the required 
memory space. Our experiments show that the proposed RA 
algorithm is very efficient in terms of speed and memory 
requirements. 
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I. Introduction 
To increase device yields, many manufacturers use 

incorporated redundancy that can be used to replace faulty cells. 
Several studies have shown that the redundancy algorithm is 
NP-complete. Therefore, many proposed redundancy analysis 
(RA) algorithms [1]-[5] are based on exhaustive binary search 
trees and require a long search time for nearly all of the serious 
cases. A new RA algorithm is needed to reduce the analysis 
time. If the memory space required for the search tree is greater 
than the usable memory space in the automatic test equipment 
(ATE), the memory repair should be stopped. Therefore, the 
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RA algorithm should create a solution using the limited 
memory space in ATE. 

The repair-most (RM) algorithm [1] is greedy, and, although 
it is not optimal, it is very simple and has thus been adopted as 
an RA algorithm in many cases. Kuo and Fuchs proposed the 
branch-and-bound algorithm, which is a heuristic method 
based on the exhaustive binary search tree [1]. The intelligent 
solve first (ISF) algorithm [2], minimized binary search tree 
algorithm [3], and BRANCH algorithm [4] are built-in self-
repair (BISR) algorithms that use a binary search tree structure. 
The ISF algorithm has an optimal repair rate, but its RA speed 
is much slower than that of other binary search algorithms. To 
reduce the search time, [3] minimizes a binary search tree and 
BRANCH concurrently analyzes all nodes of a branch for the 
binary search tree. As a result, [3] and BRANCH enable the 
algorithm to find the solution faster than ISF. However, due to 
the large hardware overhead needed for BISR, many memories 
are generated without it. For this reason, ATEs with the RA 
algorithms are used to test and repair memories. PAGEB [5] 
creates a solution that transforms a spare allocation problem 
into Boolean functions, and the renowned binary decision 
diagram is used to manipulate them. PAGEB consumes less 
memory space and time when compared to the branch-and-
bound methods. However, because PAGEB should always 
determine the defect function (DF), constraint function (CF), 
and repair function (RF), it is time-consuming and requires 
significant memory space. The DF is a Boolean function that 
encodes the locations of all faulty cells, and the CF is a 
Boolean function encoding all combinations of faulty lines 
replaceable by spare lines. In the end, RF is a Boolean function 
that encodes all repair solutions for a space allocation problem. 
Therefore, PAGEB must calculate the RF generated by the 
Boolean-AND operation between the stored DF and CF. 
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A fast RA algorithm using a simple calculation is proposed 
in this letter and compared with the above RA algorithms 
structured via C-language. The proposed algorithm determines 
a solution for repairing memory faults with a time of nearly 
zero and is also the most easily implemented algorithm for 
ATE tests. Also, since the proposed algorithm does not need to 
store the search spaces, it can greatly reduce the amount of 
memory used.  

II. Proposed RA Algorithm 

The proposed algorithm creates fault groups that are 
irrespective of each other. The faulty bit map and the fault 
group information are simultaneously generated during the 
detection of faults by the ATE.  

Definition (fault group). A fault group is defined as a set 
of single or multiple faults. A single fault group is the same as 
an orthogonal fault [6]. A multiple fault group is defined as a 
set of faults that has the same row or column address as other 
faults. 

Figure 1 shows an example with a single fault group and two 
multiple fault groups. All faults are grouped into single or 
multiple fault groups when they are detected in the ATE. For 
example, the table to the right in Fig. 1 shows a faulty bit map 
with a fault group number. The fault group list is determined as 
the ATE searches the faults in order. Each multiple fault group 
has at least two faults that have the same row or column 
address irrespective of other fault groups. 

The proposed algorithm provides a solution for repairing 
faulty memories using the following fault group properties: 

Property 1. In a multiple fault group, there are no faults that 
have the same row/column address as faults in other fault 
groups. 

Due to Property 1, the proposed algorithm can provide repair 
solutions in each fault group irrespective of the solutions for 
other groups in the remaining spare cells. Since single fault 
groups can be repaired by any redundant cells regardless of the 
row or column, they are repaired by remaining redundant cells 
after all faults in the multiple fault groups have been repaired. 

Property 2. If the number of groups is more than RS+CS, the 
memory cannot be repaired (an early termination solution). 

At least one row/column spare cell is needed to repair the 
faults in a fault group. To repair a fault group, one or more 
redundant cells are needed. Therefore, if the number of groups 
is the same or less than RS+CS, then the RA algorithm should 
determine whether the memory is repairable or irreparable. 
This feature allows the irreparable memories to be found early 
and then terminated before the RA algorithm is performed. 
Property 2 is applicable to other RA procedures that occur prior 
to the solutions searching process.  

 

Fig. 1. Example of fault groups. 

Group 1

Group 2

Group 3

Multiple  
fault group 

Single
fault 
group

Fault 
no. 

Fault address Group 
no.Row Column

1 0 0 1
2 0 3 1
3 2 4 2
4 2 6 2
5 4 0 1
6 4 2 1
7 5 4 2
8 6 4 2
9 6 6 2
10 6 7 2
11 7 1 3

 
 

 

Fig. 2. Example of FAST algorithm. 
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The proposed RA algorithm is called the FAST algorithm. 
The FAST algorithm generates a solution using Properties 1 
and 2 of the fault groups. Initially, if the number of fault groups 
is more than the number of redundancy cells, the faulty 
memory cannot be repaired using other RA algorithms. 
Therefore, with the use of this early termination solution, 
irreparable memories are terminated prior to the execution of 
an RA algorithm. Moreover, the FAST algorithm checks the 
number of faulty row/column lines in all of the multiple fault 
groups. Subsequently, it combines the number of faulty 
row/column lines in all of the multiple fault groups. As a result, 
a solution is generated using a combination of the number of 
faulty row/column lines, excluding the number of single fault 
groups. The sum of the number of row/column lines of the 
solution and the number of single fault groups must be less 
than the number of remaining redundancy cells. Finally, the 
proposed FAST algorithm repairs the single fault groups using 
the remaining redundancy cells. 

Figure 2 shows an example of a repair solution found via the 
FAST algorithm. Fault group 1 has two different row addresses 
and three different column addresses. Fault group 2 has three 
different row and column addresses. Fault group 3 has only 
one address, which means that the fault for group 3 is a single 
fault group. The only single fault group can be repaired after 
finding solutions for the multiple fault groups. From the above 
information, solutions can be determined using a combination 
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of the number of each row/column addresses in the fault 
groups. In the example shown in Fig. 2, (row: 2, column: 3+1) 
is a unique solution. Similarly, the FAST algorithm determines 
a solution for repairing memory with a nearly zero central 
processing unit (CPU) time after collecting fault groups. 

III. Experiment Results 

A 1 gigabit (1,024 blocks×1,024×1,024) memory was used 
for the experiments in this study to ensure a fair comparison. 
Each experiment was repeated 10,000 times with randomly 
generated addresses for the faulty cells. These experiments did 
not consider sharing redundancy cells in other blocks. The 
experiments were performed for different redundancy 
configurations and numbers of random faults. The generated 
faults included a single faulty cell, a row/column line of faulty 
cells consisting of several adjacent faulty cells in a row/column, 
or a rectangle of faulty cells affecting 2×2 cells. The table in 
Fig. 3 shows the generated distributions of the fault types. The 
experiments were simulated using the “row first strategy,” 
where, if possible, the faulty cells were repaired by row spare 
cells, regardless of the use of spare cells. Faults were scattered 
throughout the whole memory area. 

Figure 3 shows the average time needed to search for a 
solution according to changes in the number of faults. These 
experiments were performed using four and five spare 
rows/columns. As shown in Fig. 3, the FAST algorithm creates 
a solution with a time of nearly zero (maximum 0.39 s) 
regardless of the number of spares and faults. It is evident that 
even if PAGEB is much faster than the branch-and-bound 
algorithms [5], it requires a long time to calculate the DF, CF, 
and RF. Specifically, the calculation time of the CF 
exponentially increases as the number of spares increases. 
Therefore, we can see that the graph for PAGEB has an 
exponentially increasing curve and the graph for the RM has a 
linearly increasing curve. The RM algorithm is faster than 
PAGEB, but the repair rate of the RM is very low. As shown in 
Table 1, even if the FAST algorithm does not always maintain 
a 100% repair rate, the FAST algorithm has a 100% repair rate 
when the PAGEB algorithm has a 100% repair rate according 
to the number of faults. Since the FAST algorithm does not 
need to store the braches of trees or graphs for Boolean 
equations, it consumes a minimum amount of memory space. 
Therefore, it is highly advisable to use the FAST algorithm to 
test and repair large memories using the ATE. Additionally, if a 
user desires a 100% repair rate, it can be achieved using 
branch-and-bound algorithms after performing the FAST 
algorithm with a time of nearly zero. In other words, if a user 
wants a 100% repair rate, the FAST algorithm can be used as 
an early-termination method. 

 

Fig. 3. Average time for searching solution: (a) RS/CS: 4/4 and (b)
RS/CS: 5/5. 
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Table 1. Repair rate comparison (RS/CS: 5/5). 

No. of faults RA 
algorithm 11 12 13 14 

RM 100% 100% 95.27% 55.23% 

PAGEB 100% 100% 100% 65.34% 

FAST 100% 100% 100% 61.84% 

 

 
IV. Conclusion 

As memory size increases, the testing/repair time and 
amount of memory space used for repairing memories 
increases accordingly. Therefore, reduced time consumption 
and required memory space are necessary for memory repair 
using ATEs. The proposed FAST algorithm repairs faulty cells 
in the memory with a CPU time of nearly zero. Moreover, it 
requires almost no memory space when searching for the 
solution. Therefore, the proposed RA algorithm is useful when 
simultaneously testing and repairing large memories with 
many redundant cells.  
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