
478 Hyungjun Cho et al. © 2012 ETRI Journal, Volume 34, Number 3, June 2012

Testing memory and repairing faults have become
increasingly important for improving yield. Redundancy
analysis (RA) algorithms have been developed to repair
memory faults. However, many RA algorithms have low
analysis speeds and occupy memory space within automatic
test equipment. A fast RA algorithm using simple calculations
is proposed in this letter to minimize both the test and repair
time. This analysis uses the grouped addresses in the faulty
bitmap. Since the fault groups are independent of each other,
the time needed to find solutions can be greatly reduced using
these fault groups. Also, the proposed algorithm does not need
to store searching trees, thereby minimizing the required
memory space. Our experiments show that the proposed RA
algorithm is very efficient in terms of speed and memory
requirements.

Keywords: Redundancy analysis (RA), fault groups.

I. Introduction
To increase device yields, many manufacturers use

incorporated redundancy that can be used to replace faulty cells.
Several studies have shown that the redundancy algorithm is
NP-complete. Therefore, many proposed redundancy analysis
(RA) algorithms [1]-[5] are based on exhaustive binary search
trees and require a long search time for nearly all of the serious
cases. A new RA algorithm is needed to reduce the analysis
time. If the memory space required for the search tree is greater
than the usable memory space in the automatic test equipment
(ATE), the memory repair should be stopped. Therefore, the

Manuscript received Sept. 2, 2011; revised Oct. 20, 2011; accepted Nov. 3, 2011.
This work was supported by a grant from the National Research Foundation of Korea (NRF),

funded by the Korean government (MEST) (No. 2010-0024707).
Hyungjun Cho (phone: +82 2 2123 2775, chj0937@soc.yonsei.ac.kr), Wooheon Kang

(sudal@soc.yonsei.ac.kr), and Sungho Kang (corresponding author, shkang@yonsei.ac.kr) are
with the Department of Electrical & Electronic Engineering, Yonsei University, Seoul, Rep. of
Korea.

http://dx.doi.org/10.4218/etrij.12.0211.0378

RA algorithm should create a solution using the limited
memory space in ATE.

The repair-most (RM) algorithm [1] is greedy, and, although
it is not optimal, it is very simple and has thus been adopted as
an RA algorithm in many cases. Kuo and Fuchs proposed the
branch-and-bound algorithm, which is a heuristic method
based on the exhaustive binary search tree [1]. The intelligent
solve first (ISF) algorithm [2], minimized binary search tree
algorithm [3], and BRANCH algorithm [4] are built-in self-
repair (BISR) algorithms that use a binary search tree structure.
The ISF algorithm has an optimal repair rate, but its RA speed
is much slower than that of other binary search algorithms. To
reduce the search time, [3] minimizes a binary search tree and
BRANCH concurrently analyzes all nodes of a branch for the
binary search tree. As a result, [3] and BRANCH enable the
algorithm to find the solution faster than ISF. However, due to
the large hardware overhead needed for BISR, many memories
are generated without it. For this reason, ATEs with the RA
algorithms are used to test and repair memories. PAGEB [5]
creates a solution that transforms a spare allocation problem
into Boolean functions, and the renowned binary decision
diagram is used to manipulate them. PAGEB consumes less
memory space and time when compared to the branch-and-
bound methods. However, because PAGEB should always
determine the defect function (DF), constraint function (CF),
and repair function (RF), it is time-consuming and requires
significant memory space. The DF is a Boolean function that
encodes the locations of all faulty cells, and the CF is a
Boolean function encoding all combinations of faulty lines
replaceable by spare lines. In the end, RF is a Boolean function
that encodes all repair solutions for a space allocation problem.
Therefore, PAGEB must calculate the RF generated by the
Boolean-AND operation between the stored DF and CF.

A Fast Redundancy Analysis Algorithm in ATE
for Repairing Faulty Memories

 Hyungjun Cho, Wooheon Kang, and Sungho Kang

ETRI Journal, Volume 34, Number 3, June 2012 Hyungjun Cho et al. 479

A fast RA algorithm using a simple calculation is proposed
in this letter and compared with the above RA algorithms
structured via C-language. The proposed algorithm determines
a solution for repairing memory faults with a time of nearly
zero and is also the most easily implemented algorithm for
ATE tests. Also, since the proposed algorithm does not need to
store the search spaces, it can greatly reduce the amount of
memory used.

II. Proposed RA Algorithm

The proposed algorithm creates fault groups that are
irrespective of each other. The faulty bit map and the fault
group information are simultaneously generated during the
detection of faults by the ATE.

Definition (fault group). A fault group is defined as a set
of single or multiple faults. A single fault group is the same as
an orthogonal fault [6]. A multiple fault group is defined as a
set of faults that has the same row or column address as other
faults.

Figure 1 shows an example with a single fault group and two
multiple fault groups. All faults are grouped into single or
multiple fault groups when they are detected in the ATE. For
example, the table to the right in Fig. 1 shows a faulty bit map
with a fault group number. The fault group list is determined as
the ATE searches the faults in order. Each multiple fault group
has at least two faults that have the same row or column
address irrespective of other fault groups.

The proposed algorithm provides a solution for repairing
faulty memories using the following fault group properties:

Property 1. In a multiple fault group, there are no faults that
have the same row/column address as faults in other fault
groups.

Due to Property 1, the proposed algorithm can provide repair
solutions in each fault group irrespective of the solutions for
other groups in the remaining spare cells. Since single fault
groups can be repaired by any redundant cells regardless of the
row or column, they are repaired by remaining redundant cells
after all faults in the multiple fault groups have been repaired.

Property 2. If the number of groups is more than RS+CS, the
memory cannot be repaired (an early termination solution).

At least one row/column spare cell is needed to repair the
faults in a fault group. To repair a fault group, one or more
redundant cells are needed. Therefore, if the number of groups
is the same or less than RS+CS, then the RA algorithm should
determine whether the memory is repairable or irreparable.
This feature allows the irreparable memories to be found early
and then terminated before the RA algorithm is performed.
Property 2 is applicable to other RA procedures that occur prior
to the solutions searching process.

Fig. 1. Example of fault groups.

Group 1

Group 2

Group 3

Multiple
fault group

Single
fault
group

Fault
no.

Fault address Group
no.Row Column

1 0 0 1
2 0 3 1
3 2 4 2
4 2 6 2
5 4 0 1
6 4 2 1
7 5 4 2
8 6 4 2
9 6 6 2
10 6 7 2
11 7 1 3

Fig. 2. Example of FAST algorithm.

Row Column

Group 1 2 3

Group 2 3 3

Orthogonal
faults

1

No. of row/column spare cells: 2/4 Unique solution Row: 2, Column: 3+1

Group 1

Group 2

Group 3

The proposed RA algorithm is called the FAST algorithm.
The FAST algorithm generates a solution using Properties 1
and 2 of the fault groups. Initially, if the number of fault groups
is more than the number of redundancy cells, the faulty
memory cannot be repaired using other RA algorithms.
Therefore, with the use of this early termination solution,
irreparable memories are terminated prior to the execution of
an RA algorithm. Moreover, the FAST algorithm checks the
number of faulty row/column lines in all of the multiple fault
groups. Subsequently, it combines the number of faulty
row/column lines in all of the multiple fault groups. As a result,
a solution is generated using a combination of the number of
faulty row/column lines, excluding the number of single fault
groups. The sum of the number of row/column lines of the
solution and the number of single fault groups must be less
than the number of remaining redundancy cells. Finally, the
proposed FAST algorithm repairs the single fault groups using
the remaining redundancy cells.

Figure 2 shows an example of a repair solution found via the
FAST algorithm. Fault group 1 has two different row addresses
and three different column addresses. Fault group 2 has three
different row and column addresses. Fault group 3 has only
one address, which means that the fault for group 3 is a single
fault group. The only single fault group can be repaired after
finding solutions for the multiple fault groups. From the above
information, solutions can be determined using a combination

480 Hyungjun Cho et al. ETRI Journal, Volume 34, Number 3, June 2012

of the number of each row/column addresses in the fault
groups. In the example shown in Fig. 2, (row: 2, column: 3+1)
is a unique solution. Similarly, the FAST algorithm determines
a solution for repairing memory with a nearly zero central
processing unit (CPU) time after collecting fault groups.

III. Experiment Results

A 1 gigabit (1,024 blocks×1,024×1,024) memory was used
for the experiments in this study to ensure a fair comparison.
Each experiment was repeated 10,000 times with randomly
generated addresses for the faulty cells. These experiments did
not consider sharing redundancy cells in other blocks. The
experiments were performed for different redundancy
configurations and numbers of random faults. The generated
faults included a single faulty cell, a row/column line of faulty
cells consisting of several adjacent faulty cells in a row/column,
or a rectangle of faulty cells affecting 2×2 cells. The table in
Fig. 3 shows the generated distributions of the fault types. The
experiments were simulated using the “row first strategy,”
where, if possible, the faulty cells were repaired by row spare
cells, regardless of the use of spare cells. Faults were scattered
throughout the whole memory area.

Figure 3 shows the average time needed to search for a
solution according to changes in the number of faults. These
experiments were performed using four and five spare
rows/columns. As shown in Fig. 3, the FAST algorithm creates
a solution with a time of nearly zero (maximum 0.39 s)
regardless of the number of spares and faults. It is evident that
even if PAGEB is much faster than the branch-and-bound
algorithms [5], it requires a long time to calculate the DF, CF,
and RF. Specifically, the calculation time of the CF
exponentially increases as the number of spares increases.
Therefore, we can see that the graph for PAGEB has an
exponentially increasing curve and the graph for the RM has a
linearly increasing curve. The RM algorithm is faster than
PAGEB, but the repair rate of the RM is very low. As shown in
Table 1, even if the FAST algorithm does not always maintain
a 100% repair rate, the FAST algorithm has a 100% repair rate
when the PAGEB algorithm has a 100% repair rate according
to the number of faults. Since the FAST algorithm does not
need to store the braches of trees or graphs for Boolean
equations, it consumes a minimum amount of memory space.
Therefore, it is highly advisable to use the FAST algorithm to
test and repair large memories using the ATE. Additionally, if a
user desires a 100% repair rate, it can be achieved using
branch-and-bound algorithms after performing the FAST
algorithm with a time of nearly zero. In other words, if a user
wants a 100% repair rate, the FAST algorithm can be used as
an early-termination method.

Fig. 3. Average time for searching solution: (a) RS/CS: 4/4 and (b)
RS/CS: 5/5.

0
10

20
30

40
50

60
70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14
No. of faults

(s
)

RM
FAST
PAGEB

(b)

0
5

10
15
20
25
30
35
40
45

1 2 3 4 5 6 7 8 9 10 11 12
No. of faults

(s
)

(a)

Defect %
Single faulty cells 50 to 60

Row 10 to 20 Line faulty cells Column 10 to 20
Rectangle faulty cells 5 to 10

RM
FAST
PAGEB

Table 1. Repair rate comparison (RS/CS: 5/5).

No. of faults RA
algorithm 11 12 13 14

RM 100% 100% 95.27% 55.23%

PAGEB 100% 100% 100% 65.34%

FAST 100% 100% 100% 61.84%

IV. Conclusion

As memory size increases, the testing/repair time and
amount of memory space used for repairing memories
increases accordingly. Therefore, reduced time consumption
and required memory space are necessary for memory repair
using ATEs. The proposed FAST algorithm repairs faulty cells
in the memory with a CPU time of nearly zero. Moreover, it
requires almost no memory space when searching for the
solution. Therefore, the proposed RA algorithm is useful when
simultaneously testing and repairing large memories with
many redundant cells.

ETRI Journal, Volume 34, Number 3, June 2012 Hyungjun Cho et al. 481

References

[1] S.-Y. Kuo and W.K. Fuchs, “Efficient Spare Allocation for
Reconfigurable Arrays,” IEEE Design Test Computers, vol. 4, no.
1, Feb. 1987, pp. 24-31.

[2] P. Öhler, S. Hellebrand, and H.-J. Wunderlich, “An Integrated
Built-in Test and Repair Approach for Memories with 2D
Redundancy,” Proc. IEEE European Test Symp. (ETS), May
2007, pp. 91-96.

[3] H. Cho, W. Kang, and S. Kang, “A Built-in Redundancy Analysis
with a Minimized Binary Search Tree,” ETRI J., vol. 32, no. 4,
Aug. 2010, pp. 638-641.

[4] W. Jeong et al., “An Advanced BIRA for Memories with an
Optimal Repair Rate and Fast Analysis Speed by Using a Branch
Analyzer,” IEEE Trans. CAD, vol. 29, no. 12, Dec. 2010, pp.
2014-2026.

[5] H.-Y. Lin, F.-M. Yeh, and S.-Y. Kuo, “An Efficient Algorithm for
Spare Allocation Problems,” IEEE Trans. Reliability, vol. 55, no.
2, June 2006, pp. 369-378.

[6] C.-T. Huang et al., “Built-in Redundancy Analysis for Memory
Yield Improvement,” IEEE Trans. Reliability, vol. 52, Dec. 2003,
pp. 386-399.

