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The block cipher ARIA has been threatened by side-
channel analysis, and much research on countermeasures 
of this attack has also been produced. However, studies on 
countermeasures of ARIA are focused on software 
implementation, and there are no reports about hardware 
designs and their performance evaluation. Therefore, this 
article presents an advanced masking algorithm which is 
strong against second-order differential power analysis 
(SODPA) and implements a secure ARIA hardware. As 
there is no comparable report, the proposed masking 
algorithm used in our hardware module is evaluated using 
a comparison result of software implementations. 
Furthermore, we implement the proposed algorithm in 
three types of hardware architectures and compare them. 
The smallest module is 10,740 gates in size and consumes 
an average of 47.47 μW in power consumption. Finally, we 
make ASIC chips with the proposed design, and then 
perform security verification. As a result, the proposed 
module is small, energy efficient, and secure against 
SODPA. 
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I. Introduction 

1. Related Works 

Side-channel analysis reveals secret values using physical 
information like operation times, electromagnetic radiation, and 
power consumption from cryptographic devices. Since Kocher 
introduced differential power analysis (DPA) in 1998 [1], much 
research about side-channel analysis and its countermeasures 
has been produced. Side-channel analysis attacks crypto-
systems using the relationship between intermediate values in 
crypto devices and physical information measured from the 
devices. In other words, the attacks can be defended by 
breaking this relationship. The DPA attack, one of the most 
powerful side-channel analysis methods, can also be prevented 
by breaking correlation between intermediate values and 
measured power signals using masking or hiding methods [2]. 

Masking, one of the DPA countermeasures, inserts random 
values into the intermediate values in cipher calculations to 
break correlation, and the intermediate values in the crypto 
system are ambiguously changed. Masking methods efficiently 
prevent DPA attacks, but they are insecure against second-order 
DPA (SODPA) attacks [3]. Therefore, many researchers are 
looking into ways to defend against SODPA by applying 
additional algorithms like the shuffling method. 

The block cipher ARIA has also been threatened by DPA 
attacks, and studies on the masking are underway to prevent 
such dangers. As masking algorithms can avoid only first-order 
DPA, the shuffling method is generally used to inhibit the 
SODPA attacks. However, it is hard to apply a masking 
algorithm including a shuffling method for the block cipher 
ARIA in computationally limited environments because the 
ARIA algorithm is large and slow compared with other block 
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ciphers like AES. Moreover, most research on ARIA 
countermeasures focus on software implementation. Thus, we 
propose a new ARIA masking algorithm appropriate for 
hardware designs and implement our proposed algorithm in 
ASIC chip. 

2. Contributions 

We present two developments in this article. First, we 
introduce an advanced ARIA masking algorithm named 
adaptive random masking. The other development is that we 
efficiently implement the above algorithm to various hardware 
architectures and compare them. Moreover, we implement our 
design in an ASIC chip and verify its security. 

A. Adaptive Random Masking Algorithm 

Adaptive random masking basically uses different random 
numbers for each input block in a round, and this work can 
defend the SODPA without additional protection like S-box 
shuffling. Of course, previous masking algorithms can change 
their masks for every block when the algorithms calculate 
masking S-boxes for different masks, but this method is very 
inefficient. Our proposed method, however, is designed such 
that different random masks are utilized in every block 
efficiently in hardware implementation. 

B. Performance Evaluation of Proposed Algorithm 

Because there is no comparable research about hardware 
implementation of ARIA masking, it is difficult to directly 
evaluate the proposed masking algorithm. Thus, we implement 
the adaptive random masking algorithm in software at first, and 
then we compare the proposed algorithm with other masking 
algorithms using the implementation result.  

C. Hardware Implementation and Comparison 

We implement the adaptive random masking algorithm to 
hardware, and show it is efficient for small-area and low-power 
devices. Because there are no comparable reports about 
masked ARIA hardware implementations, we implement our 
algorithm on three types of design and compare the 
performance themselves. As the result, the 8/16-bit architecture 
is the smallest and has approximately 7.1% areal overhead. 
Moreover, the power consumption in the 8/16-bit module has a 
35.8% increment over the original ARIA module. 

D. Security Evaluation 

We experimentally evaluate the security of the proposed 
algorithm and its implementations. We program the software 
countermeasure into an 8-bit microcontroller and perform the 

SODPA resistant test. In the case of a hardware module, we 
evaluate the security using ASIC chips. In this way, we can 
experimentally verify that the adaptive random making method 
and its implementation are secure. 

The remainder of this paper is organized as follows. We 
describe the block cipher ARIA and the previous studies about 
ARIA masking algorithms in section II. We introduce the 
adaptive random masking method in section III. In section IV, 
we evaluate the efficiency of the proposed algorithm with the 
software implementation results. Section V describes hardware 
implementations for the proposed masking algorithm and their 
performance. Verification of security is presented in section VI, 
and our conclusions are given in section VII. 

II. Previous Works 

1. Block Cipher ARIA 

Block cipher ARIA, which is based on an involution SPN 
structure, encrypts and decrypts data in 128-bit blocks. ARIA can 
have a 128-bit, 192-bit, or 256-bit key size, and a corresponding 
number of round functions. A round operation in the ARIA 
procedure has a key addition, substitution layer, and diffusion 
layer. Round keys are composed by a combination of 512-bit 
expanded keys (W0, W 1, W 2, W 3). In addition, the expanded key 
is made from round functions [4], [5]. 

The substitution layer of ARIA uses four S-boxes (S1, S2, S1
–1, 

S2
–1), and S1

–1 and S2
–1 are the inverses of S1 and S2. All the   

S-boxes in ARIA are defined over composite field GF(28) with 
the irreducible polynomial m(x) = x8 + x4 + x3 + x + 1, and the 
polynomial is identically used in AES algorithm. Thus,      
S-boxes in the ARIA can be described as  

1
1( )S x A x a−= ⋅ ⊕ , 

247 8 1
2 ( ) ,S x B x b B x b D x b− −= ⋅ ⊕ = ⋅ ⊕ = ⋅ ⊕  

1 1 1
1 ( ) ( ( )) ,S x A x a− − −= ⋅ ⊕   1 1 1

2 ( ) ( ( )) ,− − −= ⋅ ⊕S x D x b  

Algorithm 1. ARIA algorithm 
Input: a plaintext M with size Nb and round key w[Nb×(Nr+1)] 
Output: ciphertext C 
state ← M 
AddRoundKey(state, w[0…Nb–1]) 
for round=1 to Nr–1 do 

SubstitutionLayer(state) 
DiffusionLayer(state) 
AddRoundKey(state, w[round×Nb, (round+1)×Nb–1]) 

end for 
SubstitutionLayer(state) 
DiffusionLayer(state) 
C ← state 
return C 
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where x–1 is the inversion function over GF(28), and A, B, D, 
and D–1 are 8×8 binary matrices for affine transform. The 
matrix A and D are defined in [6]. The diffusion layer of ARIA 
is originally represented by a multiplication of the 16×16 
involution matrix C with a 16×1 input vector I=(I0, I1, …, I15)T; 
therefore, the diffusion output can be denoted as O = C·I [7]. 

Finally, the whole ARIA algorithm can be described as in 
algorithm 2, where AddRoundKey(state, w[ ]) = state ⊕ w[ ]. In 
addition, Nb is denoted as the number of bytes and Nr is the 
number of rounds in algorithm 1. 

2. Side-Channel Analysis on ARIA and Its Countermeasures 

Since side-channel analysis was introduced, many crypto-
systems have been threatened by this attack, including ARIA. 
The weakness of the ARIA algorithm against side-channel 
analysis was presented in various studies [8]. Both DPA and 
fault injection attacks can be performed on ARIA [9]. 

A. Previous Countermeasures for ARIA 

The general masking algorithm and the algorithm using a 
masked inversion table are generally used as countermeasures 
for ARIA [10]. The general masking algorithm generates four 
masked S-boxes as shown in algorithm 2 for the masked 
substitution layer. This method requires 1,024 bytes of RAM 
and many times that to generate masked S-box tables, so it is 
inappropriate for hardware architecture. When the algorithm is 
implemented to software, total operation cycles for the general 
masking are about four times longer than original cipher’s 
operation time, which is shown in Table 1. 

Masking with a masked inversion table is relatively efficient 
for small memory environments as the algorithm requires only 
256 bytes of RAM and 256 bytes of ROM. However, this 
method is very slow for calculation. This method is ten times 
slower than the original ARIA operation cycles. Moreover, 
when we change random masks at a round or an input block, 
the whole operation time is slowed down tremendously as 
shown in Table 1. 

B. Motivation 

Previous masking algorithms are inefficient for hardware 
design and embedded systems which have restrict resources. 

 
Algorithm 2. Masked S-Boxes for general masking 

Input: S-boxes (S1, S2, S1
–1, S2

–1), r, r' 
Output: Masked S-boxes MS1, MS2, MS1

–1, MS2
–1 

for i=0 to 255 do 
MS1(i⊕r)= S1(i) ⊕ r', MS2(i⊕r)= S2(i) ⊕ r', 
MS1

–1(i⊕r)= S1
–1(i) ⊕ r', MS2

–1(i⊕r)= S2
–1(i) ⊕ r' 

end for 
return MS1, MS2, MS1

–1, MS2
–1 

Table 1. Comparison of ARIA with previous masking algorithm. 

 ARIA 
Masking with 
masked S-box 

tables 

Masking with 
masked 

inversion 
ROM 1,024 1,024 256 

Resource 
RAM - 1,024 256 

Full 
round 

operation

100% 
(7,920) 

395% 
(31,257) 

994% 
(78,723) 

Different 
mask for a 

block 
- 

4,379% 
(346,793) 

2,512% 
(198,915) 

Relative time 
to operate 

(clock cycle)
Different 

mask for a 
round 

- 
3,134% 

(248,188) 
2,037% 

(161,355) 

 

 
As the masking algorithms have low performance, many 
researchers are looking into ways to improve their efficiency. 
One of the ways is to reduce the number of calculations in 
masking table generation [7]. Applying random masks to only 
the first and final rounds in the cipher is also considered a fast 
method. These modified algorithms, however, still have 
security problems related to the SODPA attack, and these 
methods are not considered for hardware architecture and its 
efficiency. Thus, we consider that the proposed masking 
algorithm can be efficiently implemented to hardware and 
demonstrate that the proposed masking algorithm is strong 
against the SODPA attack using different random masks. 

III. Adaptive Random Masking Algorithm for ARIA 

Since the ARIA algorithm uses four S-boxes at the 
substitution layer, four masked S-boxes should be defined and, 
in general, the masked S-box table should be computed and 
stored at every round. However, in our proposed masking 
algorithm, we use only one masked inversion table, and the 
masked S-boxes are computed at each round when the 
algorithm is implemented to software. Furthermore, the 
proposed masking uses different random masks for every input 
block to defend against SODPA. For the proposed masking 
method, the inversion table and affine transform tables (A, D, 
A–1, D–1) are precomputed for operation speed in the case of 
software implementation.  

Initially, we consider that Nb and Nr notated in algorithm 1 
are 128-bit and 12 rounds, and they can be expended. The 
basic notations in the proposed ARIA masking algorithm are 
shown as  

• Let ek = (ek0, ek1,…,ek15) be a 128-bit round key, where eki 
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is an 8-bit subblock of ek for i = 0,…,15. 
• Let m = (m0, m1,…,m15) be a 128-bit message, where mi is 

an 8-bit subblock of m for i = 0,…,15. 
• Let x = (x0, x1,…,x15) be a 128-bit substitution layer input, 

where xi is an 8-bit subblock of x for i = 0,…,15 and 
denoted as x=m⊕ek. 

• Let y = (y0, y1,…,y15) be a 128-bit substitution layer output, 
where yi is an 8-bit S-box output of y for i = 0,…,15. 

• Choose r = (r0, r1,…,r15) (resp. r' = (r'0, r'1,…,r'15)) be a 128-
bit input (resp. output) masking random, where ri (resp. r'i) 
is an 8-bit subblock of r (resp. r' ) for i = 0,…,15. 

• Choose 8-bit random values rI and r'I. 
• An initial masked inversion table MI is calculated with 

initial masks rI and r'I as shown in algorithm 3.  
For each S-box, the proposed masked S-box, named the 

adaptive masked S-box, is defined as  

( ' ) : (( ' ) ) ( ' ' ),= ⋅ ⊕ ⊕ ⊕ ⊕ ⋅ ⊕i i I i i IMS x K MI x r r r K r u  
1 1 1( ' ) : ( ( ' ) ( )) ( ' ' ),− − −= ⋅ ⊕ ⊕ ⋅ ⊕ ⊕ ⊕i i i I I iMS x MI K x u K r r r r  

for some i=0,…,15, where ,K A u a= = (resp. ,K D u b= = ) 
for S1-box (resp. S2-box), and the i-th masked S-box 
input 'i i ix x r= ⊕ . The adaptive masked S-box can be 
represented as algorithm 4. 

There are sixteen masked S-box calculations in a round, and 
each calculation uses a different random number ri , as shown 
in Fig. 1. The sequence of masked S-boxes in a substitution 
layer is alternated every round. Since ( ' ) ( ) 'i i iMS x S x r= ⊕  
and 1 1( ' ) ( ) 'i i iMS x S x r− −= ⊕  by the above definition of the 
masked S-boxes, y' = y⊕r', where y' is an output of the masked 
substitution layer. For example, the first block message m0 in 
odd round is calculated to x'0= m0⊕ek0⊕r0 and inserted into the 
MS1 box with random masks r0, r'0 , rI , and r'I. The output of 

 

Algorithm 3. Adaptive masked inversion table 
Input: Inversion table I, rI, r'I 
Output: Adaptive masked inversion table MI 
for j=0 to 255 do 

MI[j]=I[j⊕rI] ⊕r'I 
end for 
return MI 

 
Algorithm 4. Adaptive masked S-Box 

Input: x'i, r i, r'i, MI, rI, r'I, affine table A, D, A-1, D-1, a, b, case 
Output: Masked S-box output y'i 

1

2
1 1 1

1
1 1 1

2

[ [( ' ) ]] ' [ ' ] , ,
[ [( ' ) ]] ' [ ' ] , ,

'
[ [ ' ] [ ] ] ' ' , ,
[ [ ' ] [ ] ] ' ' , ,

i I i i I

i I i i I
i

i i I I i

i i I I i

A MI x r r r A r a case MS
D MI x r r r D r b case MS

y
MI A x a A r r r r case MS
MI D x b D r r r r case MS

− − −

− − −

⊕ ⊕ ⊕ ⊕ ⊕ =⎧
⎪ ⊕ ⊕ ⊕ ⊕ ⊕ =⎪= ⎨ ⊕ ⊕ ⊕ ⊕ ⊕   =⎪
⎪ ⊕ ⊕ ⊕ ⊕ ⊕   =⎩

 

return y'i 

 

Fig. 1. Proposed ARIA masking scheme. 
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MS1 box is computed as y0' = S1(x0)⊕r0'. 

Because the proposed algorithm uses different mask values 
in a round, the diffusion layer output z' includes random masks 
as  

' ( ')
( ) ( ').

=
= ⊕

z DiffusionLayer y
DiffusionLayer y DiffusionLayer r

 

Therefore, we can consider the diffusion output with random 
numbers for the next round of operations. When the n-th round 
key is denoted as ek(n) and the n-th round random mask r' is 
defined as r'(n), the (n+1)th round key of the proposed masking 
algorithm is calculated as DiffusionLayer(r'(n))⊕ek(n+1). 

IV. Proposed Masking Algorithm Evaluation with 
Software Implementation 

The implementation results of the previous studies on 
masking algorithms are focused on software. Because there are 
no comparable reports on the hardware implementation of 
masked ARIA, we evaluate the proposed adaptive random 
masking algorithm with software implementation. We 
implement the proposed algorithm to software and compare it 
with previous algorithms within operation speed, memory 
allocation for algorithm, and security. 

1. Algorithm Optimization and Software Implementation 

In general, the masking scheme makes masking S-box tables, 
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but our proposed implementation scheme does not make 
masking S-box tables. The proposed algorithm generates 
masked inversion table and calculates the output of S-boxes 
every round. Therefore, the proposed algorithm can be 
implemented with only 256 bytes of ROM and 256 bytes of 
RAM. However, this implementation proved too slow in 
calculating affine transforms. As such, we changed from 
calculating affine transforms to using ROM tables. Also, we 
can improve operation speed by approximately 90%. Thus, our 
implementation needs 1,024 bytes of ROM for the affine 
transform tables, 256 bytes of ROM for an inversion table, and 
256 bytes of RAM for a masked inversion table. 

The proposed masking procedure is composed of the 
following three steps which are shown in the previous section. 
First of all, the masked inversion table is made from an 
inversion table and random masks. Second, the masked 
substitution layer is calculated at a round with input values 
and random masks. In this case, management for random 
numbers is needed because our substitution layer can be 
made using different random values for every input byte in a 
round operation to protect from SODPA. Finally, the 
diffusion layer is calculated with random values. As the 
diffusion layer output includes random values, the round keys 
which are used in next round operation are considered with 
the random masks. 

Our proposed algorithm is fully implemented in the 
following three types: 

• The first and final round masking method is the fastest way 
to mask. The method changes random numbers for every 
block, and the method has just 4% overhead compared to 
the original ARIA algorithm in clock time. This method has 
security problems, but it is just an example for fast operation 
for comparison to other method. 

• The second method is implemented with full round masks. 
The second method changes random masks for every block, 
but it uses the same random values which were used in the 
first round for all rounds. This method has approximately 
11% overhead in clock time. 

• Full round masking with different random values at every 
round method changes random masks in every block and 
every round. This method requires twice as much operation 
time as original ARIA, but this method offers high security. 

All implementations are simulated by using CalmSHINE 
software, and the results are shown in Table 2. 

2. Algorithm Comparison with Software Implementation 

Generally, the ARIA masking algorithm needs 1,024 bytes of 
RAM and 1,024 bytes of ROM to generate masking tables. In 
contrast, our proposed algorithm can be implemented with 256 

Table 2. Clock cycles for calculation of proposed masking. 

 ARIA 
Masking 

[10] Proposed ARIA masking 

Masking 
Option 

- 
Full round 
masking 

1st, final 
round 

masking 

Full round 
masking

Full round 
masking

Random 
changes 

- 
Every 
block 

Every 
block 

Every 
block 

Every 
block and 

round 
Calculation
clocks (%)

250,668
(100%)

- 
(2,512%) 

260,850 
(104%) 

279,104
(111%)

498,815
(199%)

 

bytes of ROM and 256 bytes of RAM. However, for speed, we 
implement the proposed algorithm with 1,280 bytes of ROM 
and 256 bytes of RAM. As the affine computations are very 
slow, we changed from computing affine transform to affine 
table indexing. The proposal can be efficiently applied in 
resource limited environments like smart cards which have 
small RAM size. 

A. Proposed Algorithm Evaluation with Previous Algorithm 
Using a Masked Inversion and Affine Transforms 

The operation speeds of previous algorithms are presented in 
Table 1. From the survey, we can find that the previous 
algorithm composed with a masking inversion table and affine 
transforms is very slow in contrast with the proposed algorithm. 
As we do not implement the previous work [10], the 
comparison is preceded using the relative times for operation in 
Table 2. When we compare our proposal with the previous 
method, which uses different random masks for every block, 
the proposed masking method is extremely faster than the other 
shown in Table 2. Moreover, not only can our proposal change 
random values for every block but, in contrast with the 
previous method, can also use different masks for every round.  

B. Proposed Algorithm Evaluation with Previous Algorithms 
Using Masked S-Box Tables 

It is hard to correctly compare operation times of the 
proposed algorithm with other masking algorithms which 
generate masked S-box tables because our implementation 
does not make masking tables. In this case, we can compare 
our algorithm using two methods. 

First, we count operations. The proposed algorithm requires 
832 table indexing and 1,664 XOR operations to generate a 
masked inversion table and calculate masked S-boxes. As such 
the proposed algorithm needs less table indexing but more 
XOR operations compared with the algorithm from [7]. As the 
count result shown in Table 3 is ambiguous to exactly compare 
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Table 3. Cost comparison of generating masked S-boxes and round
operation. 

Resources and operations General 
masking 

Masking 
[7] 

Proposed 
masking 

ROM (byte) 1,024 512 1,280 Required 
resource RAM (byte) 1,024 1,024 256 

Table index 1,216 708 256 Mask table 
generation XOR 2,048 768 512 

Table index 192 192 576 SubLayer 
calculation XOR 0 0 1,152 

 

Table 4. Operation clock cycle comparison by simulation. 

Simulation clock cycle General 
masking 

Masking 
[7] 

Proposed 
masking

Table generation 35,097 25,881 11,544 
CalmRISC 

SubLayer/round 448 448 1,024 

Table generation 15,635 12,312 5,651 
MSP430 

SubLayer/round 128 128 352 

Table generation 17,171 13,105 6,419 
ATmega128 

SubLayer/round 304 304 640 

 

 
the proposed algorithm and the others, we simulate the algorithms. 
When we use the CalmSHINE, which is a smart card software 
development toolkit to simulate the algorithms for comparison 
of operation clock cycles, 35,097 clocks are required for the 
generation of four masked S-boxes in general masking method. 
Our proposed implementation, however, needs 11,544 clock 
cycles for making a masked inversion table. Calculations for 
the substitution layer in a round require 1,024 clock cycles 
which is double the general masking algorithm and the 
algorithm in [7]’s calculation time. 

We also simulate the implements using various development 
tools while considering a diverse range of embedded platforms. 
We organize the same algorithms for MSP430 and ATmega-
128, which are widely used microcontrollers in various fields, 
and we can get similar result in terms of clock cycles. As a 
result, the proposed algorithm is secure against the SODPA and 
fast, even though the number of operation cycles for masking 
the substitution layer is greater than for other methods. The 
whole results are shown in Table 4. 

V. Adaptive Random Masking H/W Implementation 

Although there is much research on the ARIA hardware 
modules which do not include masking and the related 
architectures [6], [11]-[13], there are no studies on comparison 

of efficiency and structures for masked ARIA hardware 
implementation. In this section, we describe the masked 
hardware architectures considering previous architectures, 
implement the proposed algorithm to hardware modules, and 
compare the designs. 

1. Proposed Masking Hardware Architecture 

Generally, the ARIA hardware is implemented to 128-bit, 
32-bit, 16-bit, or 8-bit architectures, but there are no reports of 
masked ARIA hardware implementation. Therefore, we 
considered three types of designs to compare area efficiency, 
performance, and power consumption themselves. The 
implementations are considered using different random masks 
for every block in every round. 

• The fundamental method uses a 128-bit structure. The 128-
bit architecture has a 128-bit diffusion layer composed of 
480 two-input XOR gates and processes all random masks 
at once. Therefore, the whole structure is composed with a 
128-bit substitution layer as shown in Fig. 2(a). 

• The diffusion layer is initially a 16×16 matrix, but it can be 
split into four 16×4 matrices. Because the matrix C in 
session 2 is an involution matrix, elements of C are 
described as ci,j = c15–i,8+j. Thus, the second architecture can 
be made using a 32-bit architecture with a 32-bit diffusion 
layer and a 32-bit masking process as shown in Fig. 2(b). 

• The architecture as shown in Fig. 2(c) has mixed structure 
composed of an 8-bit substitution layer and a 16-bit 
diffusion layer. The substitution layer has just a masked   
S-box composed by a masked inversion and an affine 
transform. In the diffusion layer, we can denote the diffusion 
layer input In = (in, 0, in, 1, …, in, 7) where {n | 0 ≤ n ≤ 15} 
because the element In of input vector I is an 8-bit value. 
Furthermore, the array of the m-th bit selected from each 
input byte is defined as Îm = (i0, m, i1, m, …, i15, m), where {m | 
0 ≤ m ≤ 7}. That is, the result value can be described as 
Ôm=C·Îm where {m | 0 ≤ m ≤ 7}. 

2. Optimization for the Substitution Layer 

Making a small S-box is very important because an S-box is 
large and spends much power in cryptographic devices. As 
masked S-boxes are composed by a masked inversion function 
and affine transforms, a small masked inversion module is 
important for an area efficient implementation. Because a 
multiplication requires more circuits than any other operation, 
the whole circuit size is shrunk by reducing multiplications [7], 
[14]-[18]. 

A masked inversion function is a combination of 
multiplications, squares, constant multiplications, and XORs. 
Although an arbitrary inversion has fewer multiplications, the  
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Fig. 2. Simple block diagram of hardware implementation for
proposed masking algorithm: (a) 128-bit structure, (b) 32-
bit structure, and (c) 8/16-bit structure. 
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whole module size is not always reduced. Moreover, the area 
efficiency can be changed by the base field. For example, the 
inversion of [7] is smaller than [17] over the composite field 
GF(((22)2)2), but the inversion of [7] is larger than [17] in the 
field GF((22)2). These kinds of results are shown in Table 5 
which includes the number of transistors to compare module 
size exactly, and the proposed adaptive inversion is optimized 
based on previous studies. 

The proposed masked S-box, named the adaptive masked  
S-box, is implemented with an optimized adaptive masked 
inversion, and the architecture is accomplished with the six 
steps shown in Fig. 3. 

Table 5. Comparison of previous masked inversion. 

Inversion [7] Inversion [17] 
 

GF((22)2)2 GF(22)2 GF((22)2)2 GF(22)2

Multiplies 7 8 

Squares 3 4 

Constant mult. 2 2 

XORs 23 18 

2-input AND 112 28 128 32 

2-input XOR 205 72 200 66 

Total transistors 3,132 1,032 3,168 984 

 

 

Fig. 3. Adaptive masked S-box structure. 

Step 1 

Step 2 

Step 3 Step 4

Step 5 Step 6

Masked 
inversion

Affine 
transform

K

Affine 
transform

K–1

Masked S-box input x′

rI

ri

rI

K–1.ri

r′i r′i

K.rI⊕u r′I

Masked S-box input y

χh⊕rh||χl⊕rl 

GF(((22)2)2) 
Inverter 

ah⊕µh||al⊕µl

GF((22)2) 
Inverter 

d⊕µd

GF(22) 
Inverter x2 

a′h⊕µ′h a′l⊕µ′l

χ′h⊕r′h χ′l⊕r′l

 

 
When the 8-bit input of the adaptive masked inversion 

function is defined as χ⊕r and the λ is the constant value, the 
first step output α⊕μ is calculated as  

Step 1: α ⊕ μ = (((r'l ⊕ MA)⊕MC) ⊕ ((μ⊕MB) ⊕ MD)) 
⊕ ((r'l⊕λMF) ⊕ ME), 

where 
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Steps 2 to 4 are calculated as  
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Finally, steps 5 and 6 are compute as  
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3. Implementation Results and Performance Evaluation 

We implement three types of hardware using the proposed 
adaptive random masking algorithm. The adaptive masked 
inversion in the adaptive masked S-box requires approximately 
4,116 transistors, and it can reduce about 1.2% of the whole 
size compared to the previous inversion architecture [7]. All 
designs are synthesized without random number generator 
modules by Synopsys with 0.25-μm CMOS standard-cell 
technology library, and the results are shown in Table 6. 

When we compare our 128-bit masked ARIA module to 
non-masked ARIA [6], the proposed masking module has low 
throughput. However, the proposed architectures of 32-bit and 
16-bit are more efficient within throughput as shown in Table 6. 
Our non-masked ARIA, which is composed with the proposed 
8/16-bit structure, is relatively larger than a previous work [12]. 
That is, the previous work [12] has latches for memory. It is 
hard to reduce the size of ARIA modules because of memories 
in fact. The memories composed with latches can reduce about 

Table 6. Performance comparison of masked ARIA and non-masked 
ARIA hardware implementation. 

 Architecture Gate count 
Freq. 

(MHz) 
Thrt. 

(Mbps)
Thrt/area

(kbps/gate)
[6] 21,757 97 827 38.01 

[11] 13,893 71 25 1.79 

[12] 6,840 15 3.93 0.57 
ARIA 

Our 8/16-bit 10,027 47 15 1.59 

128-bit 29,638 35 298 10.08 

32-bit 17,484 30 60 3.43 
Proposed 
masked
ARIA 8/16-bit 10,740 38 12 1.20 

Table 7. Comparison of power simulation result. 

Proposed masked ARIA ARIA 

128-bit 32-bit 8/16-bit 8/16-bit 
AES [19] 

118.95 81.54 47.47 34.96 20.38 

 

(μW)

 

Fig. 4. Proposed masked ARIA implementation in ASIC chips.  
 
20% of the whole size. 

We performed a power simulation of our designs at 100 kHz 
2.5 V using the synopsys power compiler as shown in Table 7. 
Our implementation has random number generators to make 
masks, but the simulation was run without the random number 
generator. Finally, we produced our design to ASIC chips using 
0.18-μm CMOS standard-cell technology library as shown in 
Fig. 4 and the security evaluation board for the ASIC chip as 
shown in Fig. 5. 

It is impossible to compare our outcomes accurately with 
previous works because there are no reports that compare area 
efficiency or the performance of masked ARIA hardware 
implementations. Therefore, we implement the proposed 
algorithm on various architectures and compare them. The 
result shows that the 8/16-bit architecture is small and has low 
power consumption, which makes it suitable for small devices 
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Fig. 5. Test board for proposed masked ARIA implementation.  
 
like RFIDs or smart cards. However, our module is large and 
uses a great deal of power compared with the AES architecture 
[19], but our module is not large considering that the original 
ARIA architecture is basically larger than the AES. When the 
non-masked ARIA module is implemented using the proposed 
8/16-bit architecture, the equivalent gate count is 10,027 and 
the average power consumption at 100 kHz 2.5 V is 34.96 μW. 
Therefore, we consider that the overhead of our masking 
scheme has a 7.1% increment in area and 35.8% increment in 
power consumption. Thus, compared with other ARIA 
modules, not only is our design efficient but also safe against 
SODPA. 

VI. Security Analysis 

1. Theoretical Security Proof 

When an arbitrary element x and a uniformly distributed 
element r which is independent of x in GF(2n) are given, the 
result of the addition and the result of multiplication between x 
and r are independent of x over the composite field GF(2n) [7], 
[17]. Because our masking algorithm follows this theory, we 
can easily prove security of the proposed algorithm as seen in 
previous studies [7], [17].  

2. Experimental Security Proof 

We implemented our masking algorithm in software and 
hardware, and then experimentally verified the security for our 
system. We performed the SODPA resistant test using a 
second-order correlation power analysis (SOCPA) [3], [20]. 

i) We implemented the general masking algorithm on an 
ATmega128 processor, and then performed the SOCPA. 
The result shown in Fig. 6 presents that the general 
masking method has security problems against the 
SOCPA attack. 

ii) We implemented the adaptive random masking algorithm 

 

Fig. 6. SOCPA for various numbers of traces in software
implementation of general masking. 
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Fig. 7. SOCPA for various numbers of traces in software
implementation of proposed masking. 

0 1 2 3 4 5 
Number of traces  ×104

0.4

0.3

0.2

0.1

0

C
or

re
la

tio
n 

co
ef

fic
ie

nt
 

 
 

 

Fig. 8. SOCPA for various numbers of traces in ASIC of.
proposed masking. 
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on the same ATmega128 processor, performed a SOCPA 
experiment with the same conditions of the first test. The 
proposed masking algorithm is secure against SOCPA, 
and a result of the experiment is shown in Fig. 7.  

iii) We performed the same experiment on an ASIC chip 
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which includes the adaptive random masking algorithm. 
We made an evaluation board as shown in Fig. 5 and 
performed SOCPA on the board. From the experiment, 
we can verify that the masked ARIA hardware module is 
secure against SOCPA, and the result is shown in Fig. 8. 

VII. Conclusion 

This article presented the secure hardware implementation 
and an advanced masking algorithm for block cipher ARIA. 
The proposed algorithm, the adaptive random masking 
algorithm, was verified using comparison results of software 
implementations, and we implemented it in hardware. As this 
paper is the first report of masked ARIA hardware 
implementation, we compared various hardware architectures. 
The proposed 8/16-bit module, which is the smallest of our 
work, uses only 47.47 μW at 100 kHz 2.5 V, and the overhead 
of the masking scheme is only a 7.1% increment in area and a 
35.8% increment in power consumption compared to non-
masked ARIA module. Finally, we experimentally verified the 
security of the proposed algorithm, and results showed the 
proposed algorithm and implementations were secure against 
SODPA. Thus, we conclude that the proposed hardware and 
the adaptive random masking algorithm are appropriate for 
small devices like RFIDs or smart cards. 
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