
76 Junki Kang et al. © 2012 ETRI Journal, Volume 34, Number 1, February 2012

The block cipher ARIA has been threatened by side-
channel analysis, and much research on countermeasures
of this attack has also been produced. However, studies on
countermeasures of ARIA are focused on software
implementation, and there are no reports about hardware
designs and their performance evaluation. Therefore, this
article presents an advanced masking algorithm which is
strong against second-order differential power analysis
(SODPA) and implements a secure ARIA hardware. As
there is no comparable report, the proposed masking
algorithm used in our hardware module is evaluated using
a comparison result of software implementations.
Furthermore, we implement the proposed algorithm in
three types of hardware architectures and compare them.
The smallest module is 10,740 gates in size and consumes
an average of 47.47 μW in power consumption. Finally, we
make ASIC chips with the proposed design, and then
perform security verification. As a result, the proposed
module is small, energy efficient, and secure against
SODPA.

Keywords: ARIA, masking, side-channel analysis, low-
power design, ASIC.

Manuscript received Apr. 25, 2011; revised Aug. 25, 2011; accepted Sept. 6, 2011.
This work was supported by SCARF project which is the R&D program of KCC/KCA

[Development of the Technology of Side Channel Attack Countermeasure Primitives and
Security Validation]. This work was also supported by research program 2012 of Kookmin
University in Korea.

Junki Kang (phone: +82 42 860 1729, kang.junki@gmail.com) is with the Cyber Security-
Convergence Research Department, ETRI, Daejeon, Rep. of Korea, and is also with the
University of Science and Technology, Daejeon, Rep. of Korea.

Dooho Choi (dhchoi@etri.re.kr) and Yong-Je Choi (choiyj@etri.re.kr) are with the Cyber
Security-Convergence Research Department, ETRI, Daejeon, Rep. of Korea.

Dong-Guk Han (corresponding author, christa@kookmin.ac.kr) is with the Department of
Mathematics, Kookmin University, Seoul, Rep. of Korea.

http://dx.doi.org/10.4218/etrij.12.0111.0251

I. Introduction

1. Related Works

Side-channel analysis reveals secret values using physical
information like operation times, electromagnetic radiation, and
power consumption from cryptographic devices. Since Kocher
introduced differential power analysis (DPA) in 1998 [1], much
research about side-channel analysis and its countermeasures
has been produced. Side-channel analysis attacks crypto-
systems using the relationship between intermediate values in
crypto devices and physical information measured from the
devices. In other words, the attacks can be defended by
breaking this relationship. The DPA attack, one of the most
powerful side-channel analysis methods, can also be prevented
by breaking correlation between intermediate values and
measured power signals using masking or hiding methods [2].

Masking, one of the DPA countermeasures, inserts random
values into the intermediate values in cipher calculations to
break correlation, and the intermediate values in the crypto
system are ambiguously changed. Masking methods efficiently
prevent DPA attacks, but they are insecure against second-order
DPA (SODPA) attacks [3]. Therefore, many researchers are
looking into ways to defend against SODPA by applying
additional algorithms like the shuffling method.

The block cipher ARIA has also been threatened by DPA
attacks, and studies on the masking are underway to prevent
such dangers. As masking algorithms can avoid only first-order
DPA, the shuffling method is generally used to inhibit the
SODPA attacks. However, it is hard to apply a masking
algorithm including a shuffling method for the block cipher
ARIA in computationally limited environments because the
ARIA algorithm is large and slow compared with other block

Secure Hardware Implementation of ARIA
Based on Adaptive Random Masking Technique

Junki Kang, Dooho Choi, Yong-Je Choi, and Dong-Guk Han

ETRI Journal, Volume 34, Number 1, February 2012 Junki Kang et al. 77

ciphers like AES. Moreover, most research on ARIA
countermeasures focus on software implementation. Thus, we
propose a new ARIA masking algorithm appropriate for
hardware designs and implement our proposed algorithm in
ASIC chip.

2. Contributions

We present two developments in this article. First, we
introduce an advanced ARIA masking algorithm named
adaptive random masking. The other development is that we
efficiently implement the above algorithm to various hardware
architectures and compare them. Moreover, we implement our
design in an ASIC chip and verify its security.

A. Adaptive Random Masking Algorithm

Adaptive random masking basically uses different random
numbers for each input block in a round, and this work can
defend the SODPA without additional protection like S-box
shuffling. Of course, previous masking algorithms can change
their masks for every block when the algorithms calculate
masking S-boxes for different masks, but this method is very
inefficient. Our proposed method, however, is designed such
that different random masks are utilized in every block
efficiently in hardware implementation.

B. Performance Evaluation of Proposed Algorithm

Because there is no comparable research about hardware
implementation of ARIA masking, it is difficult to directly
evaluate the proposed masking algorithm. Thus, we implement
the adaptive random masking algorithm in software at first, and
then we compare the proposed algorithm with other masking
algorithms using the implementation result.

C. Hardware Implementation and Comparison

We implement the adaptive random masking algorithm to
hardware, and show it is efficient for small-area and low-power
devices. Because there are no comparable reports about
masked ARIA hardware implementations, we implement our
algorithm on three types of design and compare the
performance themselves. As the result, the 8/16-bit architecture
is the smallest and has approximately 7.1% areal overhead.
Moreover, the power consumption in the 8/16-bit module has a
35.8% increment over the original ARIA module.

D. Security Evaluation

We experimentally evaluate the security of the proposed
algorithm and its implementations. We program the software
countermeasure into an 8-bit microcontroller and perform the

SODPA resistant test. In the case of a hardware module, we
evaluate the security using ASIC chips. In this way, we can
experimentally verify that the adaptive random making method
and its implementation are secure.

The remainder of this paper is organized as follows. We
describe the block cipher ARIA and the previous studies about
ARIA masking algorithms in section II. We introduce the
adaptive random masking method in section III. In section IV,
we evaluate the efficiency of the proposed algorithm with the
software implementation results. Section V describes hardware
implementations for the proposed masking algorithm and their
performance. Verification of security is presented in section VI,
and our conclusions are given in section VII.

II. Previous Works

1. Block Cipher ARIA

Block cipher ARIA, which is based on an involution SPN
structure, encrypts and decrypts data in 128-bit blocks. ARIA can
have a 128-bit, 192-bit, or 256-bit key size, and a corresponding
number of round functions. A round operation in the ARIA
procedure has a key addition, substitution layer, and diffusion
layer. Round keys are composed by a combination of 512-bit
expanded keys (W0, W 1, W 2, W 3). In addition, the expanded key
is made from round functions [4], [5].

The substitution layer of ARIA uses four S-boxes (S1, S2, S1
–1,

S2
–1), and S1

–1 and S2
–1 are the inverses of S1 and S2. All the

S-boxes in ARIA are defined over composite field GF(28) with
the irreducible polynomial m(x) = x8 + x4 + x3 + x + 1, and the
polynomial is identically used in AES algorithm. Thus,
S-boxes in the ARIA can be described as

1
1()S x A x a−= ⋅ ⊕ ,

247 8 1
2 () ,S x B x b B x b D x b− −= ⋅ ⊕ = ⋅ ⊕ = ⋅ ⊕

1 1 1
1 () (()) ,S x A x a− − −= ⋅ ⊕ 1 1 1

2 () (()) ,− − −= ⋅ ⊕S x D x b

Algorithm 1. ARIA algorithm
Input: a plaintext M with size Nb and round key w[Nb×(Nr+1)]
Output: ciphertext C
state ← M
AddRoundKey(state, w[0…Nb–1])
for round=1 to Nr–1 do

SubstitutionLayer(state)
DiffusionLayer(state)
AddRoundKey(state, w[round×Nb, (round+1)×Nb–1])

end for
SubstitutionLayer(state)
DiffusionLayer(state)
C ← state
return C

78 Junki Kang et al. ETRI Journal, Volume 34, Number 1, February 2012

where x–1 is the inversion function over GF(28), and A, B, D,
and D–1 are 8×8 binary matrices for affine transform. The
matrix A and D are defined in [6]. The diffusion layer of ARIA
is originally represented by a multiplication of the 16×16
involution matrix C with a 16×1 input vector I=(I0, I1, …, I15)T;
therefore, the diffusion output can be denoted as O = C·I [7].

Finally, the whole ARIA algorithm can be described as in
algorithm 2, where AddRoundKey(state, w[]) = state ⊕ w[]. In
addition, Nb is denoted as the number of bytes and Nr is the
number of rounds in algorithm 1.

2. Side-Channel Analysis on ARIA and Its Countermeasures

Since side-channel analysis was introduced, many crypto-
systems have been threatened by this attack, including ARIA.
The weakness of the ARIA algorithm against side-channel
analysis was presented in various studies [8]. Both DPA and
fault injection attacks can be performed on ARIA [9].

A. Previous Countermeasures for ARIA

The general masking algorithm and the algorithm using a
masked inversion table are generally used as countermeasures
for ARIA [10]. The general masking algorithm generates four
masked S-boxes as shown in algorithm 2 for the masked
substitution layer. This method requires 1,024 bytes of RAM
and many times that to generate masked S-box tables, so it is
inappropriate for hardware architecture. When the algorithm is
implemented to software, total operation cycles for the general
masking are about four times longer than original cipher’s
operation time, which is shown in Table 1.

Masking with a masked inversion table is relatively efficient
for small memory environments as the algorithm requires only
256 bytes of RAM and 256 bytes of ROM. However, this
method is very slow for calculation. This method is ten times
slower than the original ARIA operation cycles. Moreover,
when we change random masks at a round or an input block,
the whole operation time is slowed down tremendously as
shown in Table 1.

B. Motivation

Previous masking algorithms are inefficient for hardware
design and embedded systems which have restrict resources.

Algorithm 2. Masked S-Boxes for general masking

Input: S-boxes (S1, S2, S1
–1, S2

–1), r, r'
Output: Masked S-boxes MS1, MS2, MS1

–1, MS2
–1

for i=0 to 255 do
MS1(i⊕r)= S1(i) ⊕ r', MS2(i⊕r)= S2(i) ⊕ r',
MS1

–1(i⊕r)= S1
–1(i) ⊕ r', MS2

–1(i⊕r)= S2
–1(i) ⊕ r'

end for
return MS1, MS2, MS1

–1, MS2
–1

Table 1. Comparison of ARIA with previous masking algorithm.

 ARIA
Masking with
masked S-box

tables

Masking with
masked

inversion
ROM 1,024 1,024 256

Resource
RAM - 1,024 256

Full
round

operation

100%
(7,920)

395%
(31,257)

994%
(78,723)

Different
mask for a

block
-

4,379%
(346,793)

2,512%
(198,915)

Relative time
to operate

(clock cycle)
Different

mask for a
round

-
3,134%

(248,188)
2,037%

(161,355)

As the masking algorithms have low performance, many
researchers are looking into ways to improve their efficiency.
One of the ways is to reduce the number of calculations in
masking table generation [7]. Applying random masks to only
the first and final rounds in the cipher is also considered a fast
method. These modified algorithms, however, still have
security problems related to the SODPA attack, and these
methods are not considered for hardware architecture and its
efficiency. Thus, we consider that the proposed masking
algorithm can be efficiently implemented to hardware and
demonstrate that the proposed masking algorithm is strong
against the SODPA attack using different random masks.

III. Adaptive Random Masking Algorithm for ARIA

Since the ARIA algorithm uses four S-boxes at the
substitution layer, four masked S-boxes should be defined and,
in general, the masked S-box table should be computed and
stored at every round. However, in our proposed masking
algorithm, we use only one masked inversion table, and the
masked S-boxes are computed at each round when the
algorithm is implemented to software. Furthermore, the
proposed masking uses different random masks for every input
block to defend against SODPA. For the proposed masking
method, the inversion table and affine transform tables (A, D,
A–1, D–1) are precomputed for operation speed in the case of
software implementation.

Initially, we consider that Nb and Nr notated in algorithm 1
are 128-bit and 12 rounds, and they can be expended. The
basic notations in the proposed ARIA masking algorithm are
shown as

• Let ek = (ek0, ek1,…,ek15) be a 128-bit round key, where eki

ETRI Journal, Volume 34, Number 1, February 2012 Junki Kang et al. 79

is an 8-bit subblock of ek for i = 0,…,15.
• Let m = (m0, m1,…,m15) be a 128-bit message, where mi is

an 8-bit subblock of m for i = 0,…,15.
• Let x = (x0, x1,…,x15) be a 128-bit substitution layer input,

where xi is an 8-bit subblock of x for i = 0,…,15 and
denoted as x=m⊕ek.

• Let y = (y0, y1,…,y15) be a 128-bit substitution layer output,
where yi is an 8-bit S-box output of y for i = 0,…,15.

• Choose r = (r0, r1,…,r15) (resp. r' = (r'0, r'1,…,r'15)) be a 128-
bit input (resp. output) masking random, where ri (resp. r'i)
is an 8-bit subblock of r (resp. r') for i = 0,…,15.

• Choose 8-bit random values rI and r'I.
• An initial masked inversion table MI is calculated with

initial masks rI and r'I as shown in algorithm 3.
For each S-box, the proposed masked S-box, named the

adaptive masked S-box, is defined as

(') : ((')) (' '),= ⋅ ⊕ ⊕ ⊕ ⊕ ⋅ ⊕i i I i i IMS x K MI x r r r K r u
1 1 1(') : ((') ()) (' '),− − −= ⋅ ⊕ ⊕ ⋅ ⊕ ⊕ ⊕i i i I I iMS x MI K x u K r r r r

for some i=0,…,15, where ,K A u a= = (resp. ,K D u b= =)
for S1-box (resp. S2-box), and the i-th masked S-box
input 'i i ix x r= ⊕ . The adaptive masked S-box can be
represented as algorithm 4.

There are sixteen masked S-box calculations in a round, and
each calculation uses a different random number ri , as shown
in Fig. 1. The sequence of masked S-boxes in a substitution
layer is alternated every round. Since (') () 'i i iMS x S x r= ⊕
and 1 1(') () 'i i iMS x S x r− −= ⊕ by the above definition of the
masked S-boxes, y' = y⊕r', where y' is an output of the masked
substitution layer. For example, the first block message m0 in
odd round is calculated to x'0= m0⊕ek0⊕r0 and inserted into the
MS1 box with random masks r0, r'0 , rI , and r'I. The output of

Algorithm 3. Adaptive masked inversion table
Input: Inversion table I, rI, r'I
Output: Adaptive masked inversion table MI
for j=0 to 255 do

MI[j]=I[j⊕rI] ⊕r'I
end for
return MI

Algorithm 4. Adaptive masked S-Box

Input: x'i, r i, r'i, MI, rI, r'I, affine table A, D, A-1, D-1, a, b, case
Output: Masked S-box output y'i

1

2
1 1 1

1
1 1 1

2

[[(')]] ' ['] , ,
[[(')]] ' ['] , ,

'
[['] []] ' ' , ,
[['] []] ' ' , ,

i I i i I

i I i i I
i

i i I I i

i i I I i

A MI x r r r A r a case MS
D MI x r r r D r b case MS

y
MI A x a A r r r r case MS
MI D x b D r r r r case MS

− − −

− − −

⊕ ⊕ ⊕ ⊕ ⊕ =⎧
⎪ ⊕ ⊕ ⊕ ⊕ ⊕ =⎪= ⎨ ⊕ ⊕ ⊕ ⊕ ⊕ =⎪
⎪ ⊕ ⊕ ⊕ ⊕ ⊕ =⎩

return y'i

Fig. 1. Proposed ARIA masking scheme.

r0

m0

...

Diffusion Layer

Add Round Key

Odd round
m1 m2 m3 m14 m15

r1 r2 r3 r14 r15

MS1 MS2 MS1
–1 MS2

–1 MS1
–1 MS2

–1

Ouput z′=DiffusionLayer(y′)
=DiffusionLayer(y) ⊕ DiffusionLayer(r′)

(a)

...

Even round

m0 m1 m2 m3 m14 m15

r0 r1 r2 r3 r14 r15

MS1 MS2 MS1
–1 MS2

–1 MS1 MS2

Diffusion Layer

Add Round Key

Ouput z′=DiffusionLayer(y′)
=DiffusionLayer(y) ⊕ DiffusionLayer(r′)

(b)

MS1 box is computed as y0' = S1(x0)⊕r0'.

Because the proposed algorithm uses different mask values
in a round, the diffusion layer output z' includes random masks
as

' (')
() (').

=
= ⊕

z DiffusionLayer y
DiffusionLayer y DiffusionLayer r

Therefore, we can consider the diffusion output with random
numbers for the next round of operations. When the n-th round
key is denoted as ek(n) and the n-th round random mask r' is
defined as r'(n), the (n+1)th round key of the proposed masking
algorithm is calculated as DiffusionLayer(r'(n))⊕ek(n+1).

IV. Proposed Masking Algorithm Evaluation with
Software Implementation

The implementation results of the previous studies on
masking algorithms are focused on software. Because there are
no comparable reports on the hardware implementation of
masked ARIA, we evaluate the proposed adaptive random
masking algorithm with software implementation. We
implement the proposed algorithm to software and compare it
with previous algorithms within operation speed, memory
allocation for algorithm, and security.

1. Algorithm Optimization and Software Implementation

In general, the masking scheme makes masking S-box tables,

80 Junki Kang et al. ETRI Journal, Volume 34, Number 1, February 2012

but our proposed implementation scheme does not make
masking S-box tables. The proposed algorithm generates
masked inversion table and calculates the output of S-boxes
every round. Therefore, the proposed algorithm can be
implemented with only 256 bytes of ROM and 256 bytes of
RAM. However, this implementation proved too slow in
calculating affine transforms. As such, we changed from
calculating affine transforms to using ROM tables. Also, we
can improve operation speed by approximately 90%. Thus, our
implementation needs 1,024 bytes of ROM for the affine
transform tables, 256 bytes of ROM for an inversion table, and
256 bytes of RAM for a masked inversion table.

The proposed masking procedure is composed of the
following three steps which are shown in the previous section.
First of all, the masked inversion table is made from an
inversion table and random masks. Second, the masked
substitution layer is calculated at a round with input values
and random masks. In this case, management for random
numbers is needed because our substitution layer can be
made using different random values for every input byte in a
round operation to protect from SODPA. Finally, the
diffusion layer is calculated with random values. As the
diffusion layer output includes random values, the round keys
which are used in next round operation are considered with
the random masks.

Our proposed algorithm is fully implemented in the
following three types:

• The first and final round masking method is the fastest way
to mask. The method changes random numbers for every
block, and the method has just 4% overhead compared to
the original ARIA algorithm in clock time. This method has
security problems, but it is just an example for fast operation
for comparison to other method.

• The second method is implemented with full round masks.
The second method changes random masks for every block,
but it uses the same random values which were used in the
first round for all rounds. This method has approximately
11% overhead in clock time.

• Full round masking with different random values at every
round method changes random masks in every block and
every round. This method requires twice as much operation
time as original ARIA, but this method offers high security.

All implementations are simulated by using CalmSHINE
software, and the results are shown in Table 2.

2. Algorithm Comparison with Software Implementation

Generally, the ARIA masking algorithm needs 1,024 bytes of
RAM and 1,024 bytes of ROM to generate masking tables. In
contrast, our proposed algorithm can be implemented with 256

Table 2. Clock cycles for calculation of proposed masking.

 ARIA
Masking

[10] Proposed ARIA masking

Masking
Option

-
Full round
masking

1st, final
round

masking

Full round
masking

Full round
masking

Random
changes

-
Every
block

Every
block

Every
block

Every
block and

round
Calculation
clocks (%)

250,668
(100%)

-
(2,512%)

260,850
(104%)

279,104
(111%)

498,815
(199%)

bytes of ROM and 256 bytes of RAM. However, for speed, we
implement the proposed algorithm with 1,280 bytes of ROM
and 256 bytes of RAM. As the affine computations are very
slow, we changed from computing affine transform to affine
table indexing. The proposal can be efficiently applied in
resource limited environments like smart cards which have
small RAM size.

A. Proposed Algorithm Evaluation with Previous Algorithm
Using a Masked Inversion and Affine Transforms

The operation speeds of previous algorithms are presented in
Table 1. From the survey, we can find that the previous
algorithm composed with a masking inversion table and affine
transforms is very slow in contrast with the proposed algorithm.
As we do not implement the previous work [10], the
comparison is preceded using the relative times for operation in
Table 2. When we compare our proposal with the previous
method, which uses different random masks for every block,
the proposed masking method is extremely faster than the other
shown in Table 2. Moreover, not only can our proposal change
random values for every block but, in contrast with the
previous method, can also use different masks for every round.

B. Proposed Algorithm Evaluation with Previous Algorithms
Using Masked S-Box Tables

It is hard to correctly compare operation times of the
proposed algorithm with other masking algorithms which
generate masked S-box tables because our implementation
does not make masking tables. In this case, we can compare
our algorithm using two methods.

First, we count operations. The proposed algorithm requires
832 table indexing and 1,664 XOR operations to generate a
masked inversion table and calculate masked S-boxes. As such
the proposed algorithm needs less table indexing but more
XOR operations compared with the algorithm from [7]. As the
count result shown in Table 3 is ambiguous to exactly compare

ETRI Journal, Volume 34, Number 1, February 2012 Junki Kang et al. 81

Table 3. Cost comparison of generating masked S-boxes and round
operation.

Resources and operations General
masking

Masking
[7]

Proposed
masking

ROM (byte) 1,024 512 1,280 Required
resource RAM (byte) 1,024 1,024 256

Table index 1,216 708 256 Mask table
generation XOR 2,048 768 512

Table index 192 192 576 SubLayer
calculation XOR 0 0 1,152

Table 4. Operation clock cycle comparison by simulation.

Simulation clock cycle General
masking

Masking
[7]

Proposed
masking

Table generation 35,097 25,881 11,544
CalmRISC

SubLayer/round 448 448 1,024

Table generation 15,635 12,312 5,651
MSP430

SubLayer/round 128 128 352

Table generation 17,171 13,105 6,419
ATmega128

SubLayer/round 304 304 640

the proposed algorithm and the others, we simulate the algorithms.
When we use the CalmSHINE, which is a smart card software
development toolkit to simulate the algorithms for comparison
of operation clock cycles, 35,097 clocks are required for the
generation of four masked S-boxes in general masking method.
Our proposed implementation, however, needs 11,544 clock
cycles for making a masked inversion table. Calculations for
the substitution layer in a round require 1,024 clock cycles
which is double the general masking algorithm and the
algorithm in [7]’s calculation time.

We also simulate the implements using various development
tools while considering a diverse range of embedded platforms.
We organize the same algorithms for MSP430 and ATmega-
128, which are widely used microcontrollers in various fields,
and we can get similar result in terms of clock cycles. As a
result, the proposed algorithm is secure against the SODPA and
fast, even though the number of operation cycles for masking
the substitution layer is greater than for other methods. The
whole results are shown in Table 4.

V. Adaptive Random Masking H/W Implementation

Although there is much research on the ARIA hardware
modules which do not include masking and the related
architectures [6], [11]-[13], there are no studies on comparison

of efficiency and structures for masked ARIA hardware
implementation. In this section, we describe the masked
hardware architectures considering previous architectures,
implement the proposed algorithm to hardware modules, and
compare the designs.

1. Proposed Masking Hardware Architecture

Generally, the ARIA hardware is implemented to 128-bit,
32-bit, 16-bit, or 8-bit architectures, but there are no reports of
masked ARIA hardware implementation. Therefore, we
considered three types of designs to compare area efficiency,
performance, and power consumption themselves. The
implementations are considered using different random masks
for every block in every round.

• The fundamental method uses a 128-bit structure. The 128-
bit architecture has a 128-bit diffusion layer composed of
480 two-input XOR gates and processes all random masks
at once. Therefore, the whole structure is composed with a
128-bit substitution layer as shown in Fig. 2(a).

• The diffusion layer is initially a 16×16 matrix, but it can be
split into four 16×4 matrices. Because the matrix C in
session 2 is an involution matrix, elements of C are
described as ci,j = c15–i,8+j. Thus, the second architecture can
be made using a 32-bit architecture with a 32-bit diffusion
layer and a 32-bit masking process as shown in Fig. 2(b).

• The architecture as shown in Fig. 2(c) has mixed structure
composed of an 8-bit substitution layer and a 16-bit
diffusion layer. The substitution layer has just a masked
S-box composed by a masked inversion and an affine
transform. In the diffusion layer, we can denote the diffusion
layer input In = (in, 0, in, 1, …, in, 7) where {n | 0 ≤ n ≤ 15}
because the element In of input vector I is an 8-bit value.
Furthermore, the array of the m-th bit selected from each
input byte is defined as Îm = (i0, m, i1, m, …, i15, m), where {m |
0 ≤ m ≤ 7}. That is, the result value can be described as
Ôm=C·Îm where {m | 0 ≤ m ≤ 7}.

2. Optimization for the Substitution Layer

Making a small S-box is very important because an S-box is
large and spends much power in cryptographic devices. As
masked S-boxes are composed by a masked inversion function
and affine transforms, a small masked inversion module is
important for an area efficient implementation. Because a
multiplication requires more circuits than any other operation,
the whole circuit size is shrunk by reducing multiplications [7],
[14]-[18].

A masked inversion function is a combination of
multiplications, squares, constant multiplications, and XORs.
Although an arbitrary inversion has fewer multiplications, the

82 Junki Kang et al. ETRI Journal, Volume 34, Number 1, February 2012

Round key
generator

ri

128

State
128 128

Round key
generator

128

State
32 32

128

32
32

128

128

32

MS

Diffusion layer

Round key
generator 16

State
8

8

8
8

8

Substitution
layer

Substitution
layer

16

128-bit reg

D
iff

us
io

n
la

ye
r

W0 W1 W2 W3 128-bit
reg

(a)

D
iff

us
io

n
la

ye
r

W0 W1 W2 W3 DIF
128-bit

reg

128-bit reg

ri

(b)

Substitution
layer

ri

W0 W1 W2 W3 128-bit
reg

(c)

MS1

MS0

MS15

128-bit reg

MS1

MS0

MS3

MS2

Fig. 2. Simple block diagram of hardware implementation for
proposed masking algorithm: (a) 128-bit structure, (b) 32-
bit structure, and (c) 8/16-bit structure.

. . .

whole module size is not always reduced. Moreover, the area
efficiency can be changed by the base field. For example, the
inversion of [7] is smaller than [17] over the composite field
GF(((22)2)2), but the inversion of [7] is larger than [17] in the
field GF((22)2). These kinds of results are shown in Table 5
which includes the number of transistors to compare module
size exactly, and the proposed adaptive inversion is optimized
based on previous studies.

The proposed masked S-box, named the adaptive masked
S-box, is implemented with an optimized adaptive masked
inversion, and the architecture is accomplished with the six
steps shown in Fig. 3.

Table 5. Comparison of previous masked inversion.

Inversion [7] Inversion [17]

GF((22)2)2 GF(22)2 GF((22)2)2 GF(22)2

Multiplies 7 8

Squares 3 4

Constant mult. 2 2

XORs 23 18

2-input AND 112 28 128 32

2-input XOR 205 72 200 66

Total transistors 3,132 1,032 3,168 984

Fig. 3. Adaptive masked S-box structure.

Step 1

Step 2

Step 3 Step 4

Step 5 Step 6

Masked
inversion

Affine
transform

K

Affine
transform

K–1

Masked S-box input x′

rI

ri

rI

K–1.ri

r′i r′i

K.rI⊕u r′I

Masked S-box input y

χh⊕rh||χl⊕rl

GF(((22)2)2)
Inverter

ah⊕µh||al⊕µl

GF((22)2)
Inverter

d⊕µd

GF(22)
Inverter x2

a′h⊕µ′h a′l⊕µ′l

χ′h⊕r′h χ′l⊕r′l

When the 8-bit input of the adaptive masked inversion

function is defined as χ⊕r and the λ is the constant value, the
first step output α⊕μ is calculated as

Step 1: α ⊕ μ = (((r'l ⊕ MA)⊕MC) ⊕ ((μ⊕MB) ⊕ MD))
⊕ ((r'l⊕λMF) ⊕ ME),

where

ETRI Journal, Volume 34, Number 1, February 2012 Junki Kang et al. 83

2

2

2

() ,
()(() ()),

(() ()),
,

()() ,

.

A h h

B l l h h l l

C h h h l l

D h l

E h h h l l

F h

M r
M r r r
M r r r
M r r

M r r r r

M r

λ χ
χ χ χ

χ χ

χ

= ⊕

= ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕

=

= ⊕ ⊕ ⊕

=

Steps 2 to 4 are calculated as
2

2

2 2

() (()())

() ()

()

d h h h h l l

l l l l h

h h l h l h l h

d μ ρ α μ α μ α μ

α μ α μ μ

α μ μ ρμ μ μ μ μ

 ⊕ = ⊕ ⊕ ⊕ ⊕

 ⊕ ⊕ ⊕ ⊕

 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Step 2:

' ' ()(') (')
()

h h h h l l h

h h l h l l

d dα μ α μ μ μ μ
α μ μ μ μ μ

 : ⊕ = ⊕ ⊕ ⊕ ⊕

 ⊕ ⊕ ⊕ ⊕

Step 3

' ' (' ') ()(')
(') ()

α μ α μ α μ μ
μ μ α μ μ

μ μ μ μ

 : ⊕ = ⊕ ⊕ ⊕ ⊕

 ⊕ ⊕ ⊕ ⊕

 ⊕ ⊕ ⊕

l l h h l l h

h l l l h

h l h l

d
d

Step 4

Finally, steps 5 and 6 are compute as

Step 5: ' ' ' 'h h h E G l Hr r M M r Mχ ⊕ = ⊕ ⊕ ⊕ ⊕

' ' ((() ()
)(' ')) ,

l l h h l l

h C H

r r r
r M M

χ χ χ
α μ

 ⊕ = ⊕ ⊕ ⊕
 ⊕ ⊕ ⊕ ⊕
Step 6:

where

(() ())((' ')),
(' ') ' .

G h h h l l

H l l F D

M r r r r
M r r M M

χ α μ
α μ

= ⊕ ⊕ ⊕ ⊕ ⊕
= ⊕ ⊕ ⊕ ⊕

3. Implementation Results and Performance Evaluation

We implement three types of hardware using the proposed
adaptive random masking algorithm. The adaptive masked
inversion in the adaptive masked S-box requires approximately
4,116 transistors, and it can reduce about 1.2% of the whole
size compared to the previous inversion architecture [7]. All
designs are synthesized without random number generator
modules by Synopsys with 0.25-μm CMOS standard-cell
technology library, and the results are shown in Table 6.

When we compare our 128-bit masked ARIA module to
non-masked ARIA [6], the proposed masking module has low
throughput. However, the proposed architectures of 32-bit and
16-bit are more efficient within throughput as shown in Table 6.
Our non-masked ARIA, which is composed with the proposed
8/16-bit structure, is relatively larger than a previous work [12].
That is, the previous work [12] has latches for memory. It is
hard to reduce the size of ARIA modules because of memories
in fact. The memories composed with latches can reduce about

Table 6. Performance comparison of masked ARIA and non-masked
ARIA hardware implementation.

 Architecture Gate count
Freq.

(MHz)
Thrt.

(Mbps)
Thrt/area

(kbps/gate)
[6] 21,757 97 827 38.01

[11] 13,893 71 25 1.79

[12] 6,840 15 3.93 0.57
ARIA

Our 8/16-bit 10,027 47 15 1.59

128-bit 29,638 35 298 10.08

32-bit 17,484 30 60 3.43
Proposed
masked
ARIA 8/16-bit 10,740 38 12 1.20

Table 7. Comparison of power simulation result.

Proposed masked ARIA ARIA

128-bit 32-bit 8/16-bit 8/16-bit
AES [19]

118.95 81.54 47.47 34.96 20.38

(μW)

Fig. 4. Proposed masked ARIA implementation in ASIC chips.

20% of the whole size.

We performed a power simulation of our designs at 100 kHz
2.5 V using the synopsys power compiler as shown in Table 7.
Our implementation has random number generators to make
masks, but the simulation was run without the random number
generator. Finally, we produced our design to ASIC chips using
0.18-μm CMOS standard-cell technology library as shown in
Fig. 4 and the security evaluation board for the ASIC chip as
shown in Fig. 5.

It is impossible to compare our outcomes accurately with
previous works because there are no reports that compare area
efficiency or the performance of masked ARIA hardware
implementations. Therefore, we implement the proposed
algorithm on various architectures and compare them. The
result shows that the 8/16-bit architecture is small and has low
power consumption, which makes it suitable for small devices

84 Junki Kang et al. ETRI Journal, Volume 34, Number 1, February 2012

Fig. 5. Test board for proposed masked ARIA implementation.

like RFIDs or smart cards. However, our module is large and
uses a great deal of power compared with the AES architecture
[19], but our module is not large considering that the original
ARIA architecture is basically larger than the AES. When the
non-masked ARIA module is implemented using the proposed
8/16-bit architecture, the equivalent gate count is 10,027 and
the average power consumption at 100 kHz 2.5 V is 34.96 μW.
Therefore, we consider that the overhead of our masking
scheme has a 7.1% increment in area and 35.8% increment in
power consumption. Thus, compared with other ARIA
modules, not only is our design efficient but also safe against
SODPA.

VI. Security Analysis

1. Theoretical Security Proof

When an arbitrary element x and a uniformly distributed
element r which is independent of x in GF(2n) are given, the
result of the addition and the result of multiplication between x
and r are independent of x over the composite field GF(2n) [7],
[17]. Because our masking algorithm follows this theory, we
can easily prove security of the proposed algorithm as seen in
previous studies [7], [17].

2. Experimental Security Proof

We implemented our masking algorithm in software and
hardware, and then experimentally verified the security for our
system. We performed the SODPA resistant test using a
second-order correlation power analysis (SOCPA) [3], [20].

i) We implemented the general masking algorithm on an
ATmega128 processor, and then performed the SOCPA.
The result shown in Fig. 6 presents that the general
masking method has security problems against the
SOCPA attack.

ii) We implemented the adaptive random masking algorithm

Fig. 6. SOCPA for various numbers of traces in software
implementation of general masking.

0 1 2 3 4 5
Number of traces ×104

0.4

0.3

0.2

0.1

0

C
or

re
la

tio
n

co
ef

fic
ie

nt

Fig. 7. SOCPA for various numbers of traces in software
implementation of proposed masking.

0 1 2 3 4 5
Number of traces ×104

0.4

0.3

0.2

0.1

0

C
or

re
la

tio
n

co
ef

fic
ie

nt

Fig. 8. SOCPA for various numbers of traces in ASIC of.
proposed masking.

0 1 2 3 4 5

Number of traces ×104

0.2

0.1

0

C
or

re
la

tio
n

co
ef

fic
ie

nt

on the same ATmega128 processor, performed a SOCPA
experiment with the same conditions of the first test. The
proposed masking algorithm is secure against SOCPA,
and a result of the experiment is shown in Fig. 7.

iii) We performed the same experiment on an ASIC chip

ETRI Journal, Volume 34, Number 1, February 2012 Junki Kang et al. 85

which includes the adaptive random masking algorithm.
We made an evaluation board as shown in Fig. 5 and
performed SOCPA on the board. From the experiment,
we can verify that the masked ARIA hardware module is
secure against SOCPA, and the result is shown in Fig. 8.

VII. Conclusion

This article presented the secure hardware implementation
and an advanced masking algorithm for block cipher ARIA.
The proposed algorithm, the adaptive random masking
algorithm, was verified using comparison results of software
implementations, and we implemented it in hardware. As this
paper is the first report of masked ARIA hardware
implementation, we compared various hardware architectures.
The proposed 8/16-bit module, which is the smallest of our
work, uses only 47.47 μW at 100 kHz 2.5 V, and the overhead
of the masking scheme is only a 7.1% increment in area and a
35.8% increment in power consumption compared to non-
masked ARIA module. Finally, we experimentally verified the
security of the proposed algorithm, and results showed the
proposed algorithm and implementations were secure against
SODPA. Thus, we conclude that the proposed hardware and
the adaptive random masking algorithm are appropriate for
small devices like RFIDs or smart cards.

References

[1] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,”
Proc. CRYPTO, LNCS, vol. 1666, 1999, pp. 388-397.

[2] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks:
Revealing the Secrets of Smart Cards, Springer, 2007.

[3] T. Messerges, “Using Second-Order Power Analysis to Attack
DPA Resistance Software,” Proc. CHES, LNCS, vol. 1965, 2000,
pp. 238-251.

[4] National Security Research Institute: The ARIA Specification,
http://210.104.33.10/ARIA/index-e.html

[5] D. Kwon et al., “New Block Cipher: ARIA,” Proc. ICISC, LNCS,
vol. 2971, Nov. 2003, pp. 432-445.

[6] S. Lee, S. Moon, and J. Kim, “High-Speed Hardware
Architectures for ARIA with Composite Field Arithmetic and
Area-Throughput Trade-Offs,” ETRI J., vol. 30, no. 5, Oct. 2008,
2008, pp. 696-706.

[7] H. Kim et al., “Efficient Masking Method Appropriate for the
Block Ciphers ARIA and AES,” ETRI J., vol. 32, no. 3, June
2010, pp. 370-379.

[8] C. Kim, M. Schläfferm, and S. Moon, “Differential Side Channel
Analysis Attack on FPGA Implementations of ARIA,” ETRI J.,
vol. 30, no. 2, Apr. 2008, pp. 315-325.

[9] W. Li, D. Gu, and J. Li, “Differential Fault Analysis on the ARIA

Algorithm,” Info. Sci., vol. 178, no. 19, 2008, pp. 3727-3737.
[10] H. Yoo et al., “A Secure Masking-Based ARIA Countermeasure

for Low Memory Environment Resistant to Differential Power
Attack,” J. KIISC, vol. 16, 2006, pp. 143-155.

[11] J. Park et al., “Low Power Compact Design of ARIA Block
Cipher,” Proc. ISCAS, IEEE, 2006, pp. 313-316.

[12] S. Yang, J. Park, and Y. You, “The Smallest ARIA Module with
16-Bit Architecture,” Proc. ICISC, LNCS, vol. 4296, 2006, pp.
107-117.

[13] B. Koo et al., “Design and Implementation of Unified Hardware
for 128-Bit Block Ciphers ARIA and AES,” ETRI J., vol. 29, no.
6, Dec. 2007, pp. 820-822.

[14] A. Satoh et al., “A Compact Rijndael Hardware Architecture with
S-Box Optimization,” Proc. ASIACRYPTO, LNCS, vol. 2248,
2001, pp. 239-254.

[15] J. Wolkerstorfer, E. Oswald, and M. Lamberger, “An ASIC
Implementation of the AES S-Boxes,” Proc. CT-RSA, LNCS, vol.
2271, 2002, pp. 67-78.

[16] P. Chodowiec and K. Gaj, “Very Compact FPGA
Implementation of the AES Algorithm,” Proc. CHES, LNCS, vol.
2779, 2003, pp. 319-333.

[17] E. Oswald et al., “A Side-Channel Analysis Resistant Description
of the AES S-Box,” Proc. FSE, LNCS, vol. 3557, 2005, pp. 413-
423.

[18] B. Zakeri et al., “Compact and Secure Design of Masked AES S-
Box,” LNCS, vol. 4861, 2007, pp. 216-229.

[19] M. Feldhofer, S. Dominikus, and J. Wolkerstofer, “Strong
Authentication for RFID System Using the AES Algorithm,”
Proc. CHES, LNCS, vol. 3156, 2004, pp. 357-370.

[20] E. Brier, C. Clavier, and F. Olivier, “Correlation Power Analysis
with a Leakage Model,” Proc. CHES, LNCS, vol. 3156, 2004, pp.
135-152.

Junki Kang received his BS in electronics
engineering from Chungnam National
University, Daejeon, Rep. of Korea, in 2007.
Since 2008, he has been a member of ETRI,
Daejeon, Rep. of Korea, and pursuing the
MS/PhD integrative program at the University
of Science and Technology, Daejeon, Rep. of

Korea. His main research interests include VLSI design, embedded
system security, side-channel analysis, and information security.

86 Junki Kang et al. ETRI Journal, Volume 34, Number 1, February 2012

Dooho Choi received his BS in mathematics
from Sungkyunkwan University, Seoul, Rep. of
Korea, in 1994, and the MS and PhD in
mathematics from Korea Advanced Institute of
Science and Technology (KAIST), Daejeon,
Rep. of Korea, in 1996 and 2002, respectively.
Since January 2002, he has been a senior

researcher at ETRI, Daejeon, Rep. of Korea. His current research
interests are side channel analysis and its resistant crypto design,
security technologies of RFID and wireless sensor network,
lightweight cryptographic protocol/module design, and cryptography
based on non-commutativity. He was an editor of the ITU-T Rec.
X.1171.

Yong-Je Choi received his BSEE and MS
from Chonnam National University, Kwangju,
Rep. of Korea, in 1996 and 1999, respectively.
He is currently a senior member of technical
staff at ETRI, Daejeon, Rep. of Korea. His
research interests include VLSI design, crypto
processor design, side channel analysis, and

information security.

Dong-Guk Han received his BS and MS in
mathematics from Korea University, Seoul, Rep.
of Korea, in 1999 and 2002, respectively. He
received his PhD in engineering in information
security from Korea University in 2005. He was
a postdoctoral researcher in Future University-
Hakodate, Japan. After finishing the doctoral

course, he was an exchange student in the Department of Computer
Science and Communication Engineering, Kyushu University, Japan,
from April 2004 to March 2005. He was a senior researcher in ETRI,
Daejeon, Rep. of Korea, from June 2006 to February 2009. He is
currently working as an assistant professor with the Department of
Mathematics, Kookmin University, Seoul, Rep. of Korea. He is a
member of KIISC, IEEK, and IACR.

