
66 Daeseon Choi et al. © 2012 ETRI Journal, Volume 34, Number 1, February 2012

This paper proposes a privacy-preserving database
encryption scheme that provides access pattern hiding
against a service provider. The proposed scheme uses a
session key to permute indices of database records each
time they are accessed. The proposed scheme can achieve
access pattern hiding in situations in which an adversary
cannot access the inside of the database directly, by
separating the entity with an index table and data table
and permuting both the index and position where the data
are stored. Moreover, it is very efficient since only O(1)
server computation and communication cost are required
in terms of the number of the data stored. It can be applied
to cloud computing, where the intermediate entities such as
cloud computing service provider can violate the privacy of
users or patients.

Keywords: Database security, privacy, searchable
symmetric encryption, access pattern.

Manuscript received Apr. 22, 2011; revised Aug. 15, 2011; accepted Sept. 6, 2011.
This work was supported by Yeungnam University research grants in 2009. Also, this

research was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology
(2010-0006355).

Daeseon Choi (phone: +82 42 860 1308, sunchoi@etri.re.kr) and Seung-Hyun Kim
(ayo@etri.re.kr) are with the Cyber Security-Convergence Research Department, ETRI,
Deajeon, Rep. of Korea.

Younho Lee (corresponding author, younholee@yu.ac.kr) is with the Department of
Information and Communication Engineering, Yeungnam University, Gyeongsan, Rep. of
Korea.

http://dx.doi.org/10.4218/etrij.12.0111.0243

I. Introduction

Cloud services delegate local data to a remote third party and
allow users to access their data anywhere, anytime. While
cloud services have become more popular recently, they have
many performance, security, and privacy requirements.

Searchable encryption schemes can be used for cloud
services to support security and privacy. There should be a way
to separate users’ privacy from their service providers. In this
case, it is good to use searchable encryption because it
separates users’ information from their service providers and
preserves the searchability of the encrypted data. Thus, an
efficient data search on the encrypted data is possible.

However, previous existing searchable encryption schemes
are focused on performance, not high-level privacy such as
hiding the access pattern [1]-[6]. Even if a database is
encrypted, an access pattern can be leaked by monitoring data
transmitted between a user and third party over time. An access
pattern refers to the sequences and frequency of documents
accessed by a user.

Leaking an access pattern causes a significant loss of privacy
to the user. For example, in stock trading applications, even if
the messages about stock trading are encrypted, trading bias in
a particular event, or the frequency of buying/selling a specific
stock, can be exposed. Moreover, an access pattern helps
predict the actual data, as in [3].

A few schemes that support an access pattern hiding property
suffer from extreme inefficiency [7]. Thus, they are not used in
practice.

In this paper, we introduce a new encryption scheme that
supports access pattern hiding, as well as searchability. We
consider how the protocol can be made using the proposed
scheme. The proposed scheme can be used in a specific

Address Permutation for Privacy-Preserving
Searchable Symmetric Encryption

Daeseon Choi, Seung-Hyun Kim, and Younho Lee

ETRI Journal, Volume 34, Number 1, February 2012 Daeseon Choi et al. 67

environment, where a cloud computing service provider is in
the middle of the users and the data servers, and thus it can
access all intermediate information transferred between them.
The proposed scheme achieves the access pattern hiding
property even with O(1) server computations and O(1)
communication. This has not been previously suggested.
Therefore, the proposed scheme provides a high level of
privacy and efficiency.

The organization of this paper is as follows. We show the
related works in section II. Section III shows the motivation
and presumed environment of the proposed scheme. Section
IV details the proposed scheme itself. Section V analyzes its
security and performance. Finally, we offer some concluding
remarks in section VI.

II. Related Works

We categorize related work into three topics. Each topic is
summarized in its own corresponding subsection.

1. Access Pattern Hiding

Much research has dealt with access pattern hiding thus far.
The authors in [4] considered a secure database system that can
hide query patterns. It employed the trusted computing device
(TCD), and thus the secret values to encrypt the data and the
codes for encrypting/decrypting the records are stored in TCD,
while the actual data are stored in conventional storage. The
hiding of access patterns is achieved since the cryptographic
operations are done in TCD, and even the server cannot access
its internals. However, there are some countries, such as Russia,
that do not allow the use of the trusted platform module (TPM).
Also, there are some privacy issues regarding the use of TPM.
For example, it may occur that a user cannot use the
application she wants to use because TPM does not allow it.
Thus, it cannot be scaled in practice yet. The authors in [7]
proposed oblivious RAM, where devices using oblivious
RAM cannot know which part of the memory they are
accessing. Thus, this supports access pattern hiding. However,
a unit operation consumes a huge amount of cost. That is, it
requires O(log3n) cost to access a single memory unit, where n
is the number of unit items stored in the memory. Therefore,
this approach does not seem practical.

Among the research related with hiding an access pattern, [8],
[9], and [10] deal with single-database private information
retrieval (PIR). In [8], a server does not know the real index of
the database a user accesses. According to [8], a user does not
expose the access pattern. However, the scheme in [8] always
handles unencrypted data and should touch every data item to
hide the access pattern. Therefore, this scheme requires a

number of operations which depend linearly on the size of the
database. Consequently, the scheme in [8] requires much time
applying the searchable symmetric encryption (SSE) because it
runs on plaintexts.

2. Searchable Encryption

Some searchable encryption researches do not provide
access pattern hiding [1]-[6], [11]. As far as we know, the
scheme in [6] is the first approach dealing with searching
encrypted data in a symmetric key setting. In [6], the scheme
reveals the access pattern of keywords. The access pattern is
revealed to the database manager, unlike in the proposed
scheme, since it uses deterministic encryption when the
keyword is encrypted.

Two of the most representative schemes can be found in [1]
and [5]. The authors in [5] mention the limitations of IND-CKA,
which is used to prove the security in the previous related works,
and modifies the definition of adaptive security. In addition, [1]
proposes the SSE-1 and SSE-2 algorithms. SSE-1 was proved
to be non-adaptive secure and manages the document’s index
using a hash table and a linked list. However, SSE-1 does not
meet the adaptive security [1] because the linked list in SSE-1
fixes the association to documents and exposes the order and list
of returned documents for the same word.

For adaptive security, SSE-2 makes trapdoors that are 1:n
mapped with a keyword, and does not use the linked list in
SSE-1. To return the index of same sized documents, SSE-2
fixes the number of trapdoors as the size of the longest
plaintext document ‘max’. Therefore, there is some overhead.
For example, in the case in which the number of documents
containing word w is 3, the trapdoors are Tw,1,Tw,2,Tw,3,….,Tw,max.
The scheme in [1] hides the search pattern and satisfies the
adaptive security, as there are different ‘max’ trapdoors for a
word. However, the indexes of returned documents and
trapdoors for the same word are always identical. Therefore,
the scheme in [1] exposes the access pattern.

Recently, [11] was suggested to support the verifiability of
search result using trie and keyed-hash function. Unfortunately,
it does not support the access pattern hiding either.

Apart from the above approaches, some keyword searching
schemes are based on public key cryptography [12]-[14]. In
general, they support high levels of security and privacy such
as access pattern hiding. However, as [1] mentioned already,
this requires heavy computational cost for a single search
operation. Thus, they do not look practical as symmetric
searchable encryption schemes due to this property.

3. Other Related Works on Database Security

Many works deal with database security. The scheme in [15]

68 Daeseon Choi et al. ETRI Journal, Volume 34, Number 1, February 2012

has a somewhat different setting from the proposed scheme, in
the sense that servers can access the data while the search
keywords are hidden from the servers. In the proposed scheme,
both the search keywords and data are regarded as sensitive
information, and therefore they are encrypted. Also, [15] is
based on Paillier’s homomorphic cryptosystem in [16]. This is
a public key cryptosystem, and therefore it takes more
resources than a symmetric cryptosystem.

Unlike the proposed scheme, whose main target is searching
based on exact matching, [17] is aimed at similarity-based
matching. The schemes in [18], [19] can be classified into this
type. Using the similarity measure, they suggested a ranked
search algorithm to retrieve up to k related documents. In [18],
the scheme employs the order-preserving symmetric
encryption [20] to protect the similarity score and to keep
maintaining ranked searchability. In [19], the authors proposed
a multikeyword search, where a query has more than a single
word. As the authors show in [18], [19], they do not support
access pattern hiding. Similarity-based matching is useful for
text retrieval, where exact matching does not produce the
information the user needs. Thus, there is little relevance
between [17]-[19] and the proposed work.

The authentication of data in an outsourced database is dealt
with in [21], [22]. The service provider may forge the stored
data due to the separation of data owner and the service
provider (outsourced database). Some type of security
mechanism should be supported to prevent such forgery and
provide assurance of the query result. This issue is orthogonal
to the proposed work because our work is about privacy
preservation on an encrypted database, while [21], [22] are
about the authentication of data that are in clear plaintext. The
manner in which to verify the query result in a database as a
service model is dealt with in [13]. It employs the aggregate
signature and Merkle hash chain to show the correctness of the
result of the range query.

Gennaro and others proposed non-interactive verifiable
computing [21] based on a fully homomorphic encryption
scheme [22], [23] for secure cloud computing. In [23], the
server can let the client compute some functions with some
input values without letting the client know them. The client
does not even know the actual results of the computation. This
property can be achieved using a fully-homomorphic
encryption scheme [24], [25]; even without decrypting
ciphertexts, it is possible to compute any kind of function
taking the values of the plaintexts hidden in the ciphertexts as
inputs. In addition, the client can prove to the server that the
function has been computed correctly, with very little
computation overhead compared to the original work to be
done. Unfortunately, it cannot be used in practice as it takes a
significant amount of time, that is, on the order of tens of

Fig. 1. Motivating environment.

Cloud computing
service provider

(or search engine)

Databases or storages
including management

system

Data search (query)

Data search (query) on behalf
of users

Try to get private information
of users

Users

minutes, to compute even very primitive computations, such as
bit-wise addition and multiplication, because the underlying
homomorphic encryption scheme is very slow [23] even when
using a strong contemporary machine such as an IBM System
x3500 server.

III. Motivation and Problem Definition

This section shows the need for a new scheme and states the
problem definition. We also explain the environment assumed
in this paper. Finally, we define the protocol we need to solve
the problem.

1. Motivation

Suppose there are three types of entities: users, a service
provider, and a database. Users store their data in a third-party
database in an encrypted form. They perform this action via the
service provider. Therefore, the service provider does not have
information about the databases, and vice versa. Instead, the
service provider links the users to the databases. The service
provider executes data search/add/delete operations after
receiving the users’ requests, and it returns the results to them
after the third-party databases send the search/add/delete results
to the service provider.

In this situation, we want to preserve the privacy of the users
from third-party databases and their service provider. In this
case, we can provide searchability and privacy by employing
searchable encryption [1]-[6]. Unfortunately, the existing
schemes cannot hide the access pattern of users from the
service provider. In view of third-party databases, the threat of
a privacy violation is not a big issue because they do not know
the identities of the users behind the service provider. However,
the service provider can be hostile in terms of the users’ privacy

ETRI Journal, Volume 34, Number 1, February 2012 Daeseon Choi et al. 69

because the private information of users has a commercial
value under certain situations.

Figure 1 shows the environment we explained thus far. It is
well suited to a cloud-computing environment, where users
outsource the search ability as well as the databases to external
companies.

We have termed the scheme searchable symmetric
encryption with access pattern hiding (SSE-APH) because it
should support searchability and access pattern hiding.

2. Scenario of Proposed Scheme

We first introduce the entities appearing in the scenario. Users
have documents, make indices for them, and store them in the
index server and document server. In addition, all
communication between the user and servers is via the service
provider. Therefore, there are four types of entities in the system.

Figure 2 shows the scenario of the proposed scheme. The
scenario has two phases. At the initial phase, the secret keys are
shared among the user and servers. The service provider is
assumed not to execute an active attack but perform passive
attacks. We suppose this is done with an existing scheme such
as a tripartite key exchange protocol [26]. Also, the user
generates indices for the documents stored and sends both the
documents and indices to the document server. The document
server stores the documents in the appropriate places indicated
by the indices. It removes the indices after storage. The index
server only has the indices coming from the user. We separate
the index server and document server to support flexibility.
Therefore, it can be combined into a single entity under certain
environments.

The document searching procedure is shown at the bottom
section of Fig. 2. Whenever a user wants to retrieve documents
that are mapped to a key w, she generates a trapdoor for the
keyword. The trapdoor is sent to the service provider, and it
retrieves the document IDs that correspond to the trapdoor
from the index server. They are forwarded to the document
server and the server replies with the corresponding encrypted
documents to the service provider. The service provider sends
them to the user after they receive them.

3. Problem Definition

We first describe the properties that the proposed scheme
should meet in terms of security and functionality. Then, we
discuss why such requirements are needed.

i) Searchability. The service provider can obtain the
documents that the user wants and send them back to the
user.

ii) Confidentiality
• No entities other than the user can see the plain form of

Fig. 2. Scenario of proposed scheme.

2. Index+documents
encrypted by
the shared
key

User
Service
provider

Document
server

Index
server 0. Key exchange

User
Service
provider

6. Documents

Init. step 1 Init. step 2

Document
search step 1

3. Index

User

Service
provider

Document
server

Index
server

Document
search step 2

0. Make a trap
door for a
document

1. Trapdoor
(Tw)

2. Search-ID
request
with Tw

4. Document
IDs

3. Run search-ID with
Tw and update index

5. Document
IDs

User

Service
provider

Document
server

Index
server

1. Build index

7. Document IDs are updated.

8. Documents

Document
server

Index
server

the documents.

• The service provider cannot make a new trapdoor
without the user’s intervention.

iii) Access pattern hiding (from the service provider). The
service provider cannot obtain the document access
pattern of the user without the help of other entities.

iv) Efficiency. The search complexity should not depend on
the size of the stored documents.

The requirements are analogous to previous works [1], [2],
[6], [18], [19] except the access pattern hiding requirement and
the efficiency requirement. Since access pattern hiding
requirement includes weak privacy requirements such as
keyword privacy and trapdoor unlinkability in [18], we only
address access pattern hiding. The efficiency requirement is
somewhat stronger than those in the previous works [11], [18],
[19] in the sense that the communication and computation of
the server caused by searching is independent of the number of
data stored. To our knowledge, no methods support both the
third and fourth properties [1]-[6], [11], [18], [19]. Our main
contribution is to propose a scheme meeting all the above
requirements.

We assume that all of the entities in the scenario maintain the
protocol. As an active attack is out of the scope of this paper,
we do not consider that type of attack and only consider
passive attacks. The servers can try to break the confidentiality
of a user’s data. The service provider is the main possible
adversary in the scenario. It can try to break the confidentiality
including the trapdoor and access pattern hiding.

IV. Proposed Scheme

This section proposes a searchable encrypted database
scheme that satisfies security and privacy. We formally define

70 Daeseon Choi et al. ETRI Journal, Volume 34, Number 1, February 2012

the proposed scheme and its security model and prove that the
proposed scheme meets the security model. The proposed
scheme and its security model are based on the discussion thus
far.

1. Notations

We borrow the notations from the authors in [1] and the data
structures used by their construction. Let Δ = {w1,…, wd} be a
dictionary of d words and 2Δ be the set of all possible
documents. Further, let D 2⊆ Δ be a collection of n documents
where D = (D1,…,Dn) and 22

Δ

is the set of all possible
document collections. Let id(D) be the identifier of document
D, where the identifier can be any string that uniquely identifies
a document. Let ,′Δ ,′Δ ∈ Δ be the set of distinct words that
exist in document collection D, and D(w) be the set of
identifiers of documents in D that contain the w, such as a
memory location. We denote by D(w) the lexicographically
ordered list consisting of the identifiers of all documents in D
that contain the w.

We write x←X to represent an element x being sampled from
a distribution X, and ←

R
x X represents an element x being

sampled uniformly from set X. The output x of an algorithm A
is denoted by x←A. We write || to denote a string concatenation.
We say a function ν:N→N is negligible if for every polynomial
p(·) and all sufficiently large k, ν(k) <1 ().p k

We sometimes refer to D(w) as the outcome of a search for w
and to the sequence (D(w1), . . . ,D(wn)) as the access pattern of
a client. We also define the search pattern of a client as any
information that can be derived from knowing if two arbitrary
searches were performed for the same word.

In addition to encryption schemes, we also make use of a
pseudo-random permutation, which is a polynomial-time
computable function that cannot be distinguished from a
random function by any probabilistic polynomial-time
adversary.

2. Definitions

Here, we define the proposed SSE-APH. We extend the
definition of SSE given in [1]. Note that some of the names of
the algorithms such as BuildIndex and Trapdoor are borrowed
from previous works [1], [18], [19]. However, the details of the
proposed scheme are different from them.

Definition 1. Searchable symmetric encryption scheme with
access pattern hiding. An SSE-APH scheme is a collection of
five polynomial-time algorithms and a protocol (Keyshare,
BuildIndex, Trapdoor, Search_Index, and Search_Document):

• KeyShare(1k) is a probabilistic key sharing protocol
between the user U, the index server, and the document

server. The result of this protocol is that all the entities
share a common secret key K. The length of K is
polynomially bounded in k.

• BuildIndex(K,D) is a (possibly probabilistic) algorithm run
by user U to generate indexes. It takes a secret key K and
D, which is a document collection polynomially bounded
in k, as inputs, and returns an index I such that the length of
I is polynomially bounded in k.

• Trapdoor(K, w, i) is run by the user U to generate a trapdoor
for a given word. It takes a secret key K, a w, and an index
i as inputs, and returns a trapdoor Tw,i.

• Search_Index(IT, Tw,i) is run by the index server IS to
search for the i-th document in D that contains a w. It takes
an index table IT for a collection D, and a trapdoor Tw,i for
a w, as inputs, and returns the i-th identifier of documents
containing w.

• Search_Document(DT, document_id) is run by the
document server DS to retrieve an encrypted document
identified by the id. DS searches a data table DT with id
and returns a corresponding document to the user U.

The following definitions are given to define the access
hiding property and other security properties. These
definitions are similar to those in [1]. However, there is a
slight difference due to the differences of the setting. We
borrow the adaptive security definition of SSE-APH from [1]
because SSE-APH is included in SSE and needs to have the
same property in terms of confidentiality. Therefore,
definition 5 is borrowed from [1].

Definition 2. History [1]. Let D be a collection of n
documents and ∆ be a dictionary. A history Hq, Hq ∈ 22

Δ
× ∆q,

is an interaction between a client and the document server via
the service provider over q queries. The partial history
Hq

t ∈ 22
Δ

× ∆t of a given history Hq = (D,w1,…,wq), is the
sequence Hq

t = (D,w1, . . . ,wt), where t ≤ q.
Definition 3. View [1]. Let D be a collection of n documents,

index I for collection D, and Hq = (D, w1, . . . ,wq) be a history
over q queries. An adversary’s view of Hq under secret key K is
defined as VK(Hq) = (I, Tw,1, . . . , Tw,q). The partial view VK

t (Hq)
of a history Hq under secret key K is the sequence VK

t (Hq) = (D,
Tw,1, . . . , Tw,t), where t ≤q.

Definition 4. Trace [1]. Let D be a collection of n documents
= (d1,…,dn), D(w) be a list of documents that contain a w, E(di)
be an encrypted version of document di, and Hq = (D, w1,... ,wq)
be a history over q queries. The trace of Hq is the sequence
Tr(Hq) = (E(d1),…,E(dn), D(w1),…,D(wq), |D(w1)|,…,|D(wq)|,
Πq, Γq) (Π: search pattern, Γ: the number of queried words).

Definition 5 [1]. Adaptive semantic security for SSE. An
SSE scheme is adaptively semantically secure if for all q ∈ N
and for all (non-uniform) probabilistic polynomial-time
adversaries A, there exists a (non-uniform) probabilistic

ETRI Journal, Volume 34, Number 1, February 2012 Daeseon Choi et al. 71

polynomial-time algorithm (the simulator) S such that for all
traces Trq of length q, all polynomially samplable distributions
Hq over {Hq ∈ 22

Δ
× ∆q: Tr(Hq) = Trq} (that is, the set of

histories with trace Trq), all functions f : {0, 1}m {0, 1}poly(m)
(where m = |Hq|), all 0 ≤ t ≤ q, and all polynomials p and
sufficiently large k:

1Pr ((H)) (H) Pr (Tr(H)) (H) ,
()

t t t t
K q q q qA V f S f

p k
⎡ ⎤ ⎡ ⎤= − = <⎣ ⎦ ⎣ ⎦

where Hq
R← Hq, K R← KeyShare(1k), and the probabilities are

taken over Hq and over the internal coins of KeyShare, A, S and
the underlying BuildIndex algorithm.

Definition 6. Hiding access pattern/hiding frequency.
History Hq for q-th queries, two arbitrary trapdoors Tw and Tw'
for an arbitrary w, and the search results R(Tw) and R(Tw'), for
all polynomial-time circuit families {Ak}, efficiently large k,
and polynomial p, the following inequality should hold:

1Pr (H , ()) 1 Pr (H ,))) 1 .
()k q w k q wA R T A R T

p k
⎡ ⎤ ⎡ ⎤′= − = <⎣ ⎦ ⎣ ⎦

3. Algorithms

We propose a searchable encryption scheme for a single user.
These algorithms are the implementations of those shown in
definition 1 to make them work in the scenario shown in
section III.

A user U stores n encrypted documents in collection
D = (d1,…,dn) at the document server DS and retrieves a
specific document with a document_id. DS maintains the data
table DT that keeps the encrypted documents. The index server
IS manages the index table IT generated by U. U keeps a cache
named word call cache (WCC). Let π(•) be a pseudo-random
permutation and E(•) be a semantically secure symmetric
encryption scheme. All the algorithms are shared among U, DS,
and IS. Tables 1, 2, and 3 show the schemas of IT, DT, and
WCC.

A tuple of the IT is assigned to each document in D(w). D(w)
is a collection of documents containing the w ′∈ Δ . Thus, the
IT has | |

1| () |′Δ
=∑ ii D w tuples. The trapdoor is generated with a

concatenation of a w and an index number i that represents the
order in D(w). For example, suppose that d‘coin’,1 is the first
document in D(‘coin’), the corresponding tuple of IT uses
‘coin’ and the order ‘1’ to make the trapdoor. For each w, the
IT allocates |D(w)| tuples, and the initial values of each tuple’s
trapdoor are πkuser(w||1),…, πkuser (w || |D(w)|) in order.

The word_counter keeps the number of documents that
contains each word. An attacker might predict their relationship
more easily if the tuples that have the same word_counter
value may contain the same word. Therefore, the number is

Table 1. Schema of IT.

Name Initial value Description

trapdoor πkuser (w||i)

-Primary key
-Permutated concatenation of a
w and an index i, where i is
index of D(w),1 ≤ ≤i |D(w)|

document_id πkuser(id(di))

Permutated index of a document
di. d is the i-th document in
D(w), 1 ≤ ≤i |D(w)|. This is the
same as the document_id of DT.

word_counter Ekw(id(di)|||D(w)|)

Encrypted concatenation of a
document di and |D(w)|. |D(w)| is
the number of documents that
contain a w.

Table 2. Schema of DT.

Name Initial value Description

document_id πkuser(id(d))
-Primary key
-Permutated identifier of document d

with a user’s symmetric key kuser

document Ekuser(d) An encrypted document d with a user’s
symmetric key kuser

Table 3. Schema of WCC.

Name Value Description

word w Word queried by a user

round r Number of queries corresponding to a w

combined with the index of a document and then encrypted. It
indicates the number of documents that contain a word.
Therefore, it allows for an efficient sequential search.

WCC is maintained by U. The round items in all tuples are
initialized to zero. Whenever a query corresponding to a w is
executed, the round in the tuple WCC[w] is increased. If a w is
used for the first time, then WCC[w] is 1 after the search is
finished. As the number of queries about w increases, the round
value in WCC[w] also increases.

U does not know IS and DS before it stores data at the IS and
DS. If the protocol begins, we assume that the IS and DS are
authenticated by U. U does not have to be authenticated
because there is no reason that the service provider makes U
use the servers without being authenticated. Therefore, the
service provider certifies the trust of U to the servers. However,
we also suppose that the service provider and servers do not
collaborate with each other since we assume they do not
belong to the same company.

We show the descriptions of the implementations of the
algorithms below.

72 Daeseon Choi et al. ETRI Journal, Volume 34, Number 1, February 2012

A. KeyShare(1k)

Let k be security parameters and let (G, E, D) be a
semantically secure symmetric encryption scheme with E : {0,
1}k × {0, 1}* → {0, 1}*. In addition, we make use of one
pseudo-random permutation π with the following parameters:

π : {0, 1}k × {0, 1}k → {0, 1}k.
As we mentioned before in the paper, by using the existing

protocol such as tripartite key exchange [26], U, IS, and DS
share two keys kshare and pshare. With both values, a session
specific key kn

session for session n is generated by
kn

session πpn(kshare), where pn is the result of the n-th consecutive
execution of the pseudo random number generator with pshare as
a random seed. Finally, U generates kuser

R← {0,1}k. This is only
used by U.

B. BuildIndex(K, D)

K denotes the (kshare, pshare., kuser) pair, and D is the entire set of
documents. First, U scans D and generates a distinct word list

′Δ in which all element words are contained in D. Then, for
each w ′∈ Δ , U generates a list of documents D(w)⊆ D that
contains w. U generates an IT that maintains the list of
document indices to be used for searching the DT. Table 1
shows the schema of the IT. Next, U generates a DT to save the
documents. Table 2 shows the schema of the DT. From the rest
of the algorithm description, we assume the first item in the
schema is an index of the table, because it is the primary key.
Therefore, we represent a tuple in IT as IT[πkuser(w||i)] =
<πkuser(id(di)), Ekuser(id(di)|||D(w)|)>. Similarly, we represent a
tuple in DT as DT[πkuser(id(d))] = Ekuser(d). From the description
of the tuples, it is found that the index of DT is stored as the
second item in IT. This is the document_id. Finally, the
word_counter is re-encrypted with the same key, and thus the
resulting value changes.

C. Trapdoor(K, w, i)

For a given w, a user U generates a trapdoor for the service
provider to get the i-th document containing w. If U searches
the word for the first time, the trapdoor is T1

w,i πkuser(w||i). For
the j-th time, Tj

w,i πkw(Tj-1
w,i), where kw πpshare(w||0). As

explained before, WCC stores the number of searches for a w.
Thus, U can compute Tj

w,i from scratch. U can store the
trapdoor for the previous search to reduce the amount of
computations. In this case, the amount of computations
becomes O(1).

D. Search_Index(IT, Tw,i)

IS uses this algorithm to determine the corresponding index
for a given trapdoor Tw,i.. It includes the operations for updating

IT to support access pattern hiding. Using the trapdoor received,
this algorithm returns the corresponding document_id. If such a
tuple does not exist, then it returns the null message.

Next, the tuple with Tw,i as the primary key (index) is
updated: the first item, that is, the index, is changed to πkw(Tw,i),
where kw πpshare(w||0). The second item, that is, document_id,
is changed to πk'w (document_id), where k'w πpshare(w||1).

E. Search_Data(DT, document_id)

DS uses this algorithm to retrieve the document
corresponding to the given document_id on DT. DS finds the
document that is in the same tuple as document_id. Then,
returns the document. If no such document_id exists, then it
returns a null message. If it does not return a null message, the
tuple with the return value in DT is updated: the document_id is
changed to πk'w (document_id), where k'w πpshare(w||1). In
addition, the document in the tuple is also re-encrypted, and
thus it has a different form. The access hiding property of the
proposed scheme is guaranteed due to this procedure.

4. Search Protocol

This subsection shows how U initializes the system with
other entities. Then, it also shows how U searches documents
with a key w ′∈ Δ .

A. Initialization Protocol

U, IS, and DS share kshare and pshare using the KeyShare(1k)
protocol. This protocol is executed via the service provider.
Next, U executes the BuildIndex algorithm with K=(kshare, kuser,
pshare) and the set of documents D. The result of BuildIndex IT
and DT are sent to the IS and DS, respectively. Then, U
removes them from its storage.

B. Search Protocol

U runs the Trapdoor(K, w, 1) algorithm to obtain the first
trapdoor for w, Tj

w,1. U sends this to the IS. IS sends
word_counter back to the user. If such a word does not exist in
IT, IS sends a dummy ciphertext to U so that the service
provider cannot distinguish a case in which no such word
exists from one in which it does. Next, U runs Trapdoor(K, w,
i), where i=1,..,word_counter. Thus, it creates the other
trapdoors. Suppose wmax is at the word that most documents
have. Then, the other |D(wmax)| – word_counter dummy
trapdoors are generated, and thus the service provider cannot
determine the actual number of documents. These dummy
messages will produce the dummy indices by IT. They are sent
to DT via the service provider. They also produce many
dummy encrypted documents that are transferred back to U.

ETRI Journal, Volume 34, Number 1, February 2012 Daeseon Choi et al. 73

Regardless, the number of messages is fixed to |D(wmax)|: the
service provider cannot exploit the knowledge about the
number of messages transmitted to determine the access
pattern.

Except in the case of dummy messages, the correct trapdoors
are sent to IS, and IS gives DS the corresponding indices of the
documents via the service provider after running the
Search_Index(IT, Tw,i) algorithm for each of the (correct)
trapdoors. DS returns the corresponding documents back to U
via the service provider.

V. Analysis

In this section, we analyze the proposed scheme by
comparing it to previous works.

1. Security and Privacy

Theorem 1. The proposed SSE-APH is an adaptive secure
scheme based on definition 5.

Proof. For proof, we follow the simulation-based approach
of definition 5. We describe a probabilistic polynomial-time
simulator S that has the ability to use the trace of a partial
history. We prove that for 0≤t≤q, Vq

t* is indistinguishable from
VK

t(Hq), which is the output of simulator S(Tr(Hq
t)).

VK(Hq) = {DT, IT, T1,….,Tq },
VK

t(Hq) = {DT, IT, T1,….,Tt }, where 0≤t≤q,
Tr(Hq) = {E(d1),…, E(dn), D(w1),…,D(wq), |D(w1)|,…,|D(wq)|,

Πq, Γq },
Tr(Hq

t) = {E(d1),…, E(dn), D(w1),…,D(wt), |D(w1)|,…,|D(wt)|,
Πt, Γt }, where 0≤t≤q.

The simulator S knows about pseudo-random permutations π
and f. Now, we generate VK

t* = {DT*,IT*,T1
*,…,Tt

*} using
simulator S.

For t=0, there is no communication between server and
client. Simulator S generates V0

* = {DT*, IT*}.
• DT*: for 0≤i≤m, simulator S generates a random string

αi
R← {0,1}k and sets DT*[αi] = E(di).

• IT*: for 0≤i≤m, simulator S generates random strings
βi,γi,δi

R← {0,1}k and sets IT*[βi] = <γi,δi >.
Simulator S knows E(di) but does not know its index, which

is the output of a pseudo-random permutation with the seed
kuser. Therefore, simulator S sets E(di) to random locations in the
DT*. If DT* and DT are distinguishable, it means someone can
distinguish between the output of a pseudorandom permutation
and a random string. IT* is also indistinguishable from IT. The
reason for this is that IT is constructed based on a semantically
secure encryption scheme, and is the output of a pseudorandom
permutation with seed kuser. If IT* and IT are distinguishable,
someone can distinguish between the output of pseudorandom

permutation and a random string, or between the output of a
semantically secure ciphertext and a random string.

For 1≤t≤q, simulator S generates VK
t*. Simulator S is adaptive,

so it can use V0
* and VK

t-1*. Let simulator S generate a trapdoor
for wt. Then, simulator S checks if the trapdoor for wt has been
used before through Πt-1. If the trapdoor has not been used
before, simulator S generates a random address addrr and sets
the IT*[addrr] = <γi,δi > and the Tt

* = addrr. Otherwise,
simulator S obtains information regarding about how many
queries corresponding to wt have been asked through Γt. Let us
call this c. Now, simulator S executes step 3 of the BuildIndex
algorithm using c instead of WCC[wt]. However, simulator S
does not know about kuser, kshare, and pshare, and thus there is no
choice except to use a random string. This is the same for DT*.
Therefore, we can say that Vq

t* and VK
t(Hq) are

indistinguishable by definition 5. □
Theorem 2. The proposed scheme hides access

pattern/hiding frequency.
Proof. For every wi in IT, let the number of queries be ti and

the document index returned is then 1−t
ksE (πkc(id(D(wi))). The

size of the output of the encryption scheme E:{0,1}*×{0,1}k→
{0,1}* is a fixed number, say r. Thus, the range of the domain is
2r. Therefore, two outputs from one word would be
distinguishable with probability 1/2r. □

For each trapdoor and document_id used, the proposed
scheme permutes them by using a shared key between U and
server S. The access pattern is not revealed with the history of
trapdoors and document_ids because every trapdoor and
document_id is unique. According to the definition of the
random permutation, every trapdoor and document_id is used
at most once and is indistinguishable from one another. In
addition, for each session, the different seed value of the
permutation is allocated.

Even for the same w, generated trapdoors Tw,1,…,Tw,|D(w)|
differ from each other. Therefore, like a coin toss, an adaptive
adversary cannot distinguish if two trapdoors are generated
from the same word.

2. Performance

We quote the performance of the previous works from [1].
Table 4 shows the performance of the proposed scheme. We
deduce each result from the procedure for generating trapdoors
and searching documents for a word. n is the number of
documents in document collection D and is the standard of the
time complex. The server computation is the cost per returned
document. The number of rounds only considers the interaction
rounds between a server and user. The communication cost
only considers a message’s overhead, which is transmitted
from the user to the server. That is, we omit the size of

74 Daeseon Choi et al. ETRI Journal, Volume 34, Number 1, February 2012

Table 4. Properties and performances (per query) of various SSE schemes (n: the number documents stored in DS).

Properties Proposed scheme [7] [2] SSE-1 [1] SSE-2 [1] [3]

Access pattern Y Y N N N N

Adaptive adversaries Y Y N N Y N

Server computation O(1) O(log3n) O(n) O(1) O(1) O(1)

Server storage O(n) O(n*log2n) O(n) O(n) O(n) O(n)

Number of rounds O(1) O(logn) 2 1 1 O(1)

Communication O(1) O(log3n) O(1) O(1) O(1) O(1)

extracted documents that the server returns. The server storage
includes the stored database, table, and keys.

A. Server Storage

DS stores n encrypted documents in the DT for the proposed
scheme. In IT, for distinct words ′Δ that contain n documents,
the server allocates |D(w)|-th tuples for each w ′∈ Δ . That is, IT
has | |

1| () |ii D w′Δ
=∑ tuples. In addition, when the servers establish

a session for a user, the storage requirement is increased two-
fold. They replicate the user’s DT and IT. Therefore, the
storage overhead is | |

12 (| () |) O(),iin D W n′Δ
=

× + =∑ which is
the same as in [1].

B. Number of Rounds

In the proposed scheme, a user generates a trapdoor Tw,1 and
query to the servers for a w. From the servers’ response, the
user obtains a document_id of the first document and the
number of entire documents |D(w)| that contain the w. If
|D(w)| > 1, the user proceeds with the search further by an extra
of |D(w)| – 1 rounds. We do not include the search of DT with
document_ids. Namely, the proposed scheme requires
O(|D(w)|) = O(1) rounds.

C. Communication

The trapdoor of w, Tw,i, is πkw
j(πkuser(w||i)), where 1≤i≤ |D(w)|,

0≤j≤t, and t is the number of searches for w. Due to the random
permutation π : {0, 1}k × {0, 1}k → {0, 1}k, the size of a
message for the server is O(k) = O(1) because k is less than a
few hundred and is a fixed number.

D. Server Computation

For w, IS searches the IT with Tw and retrieves a
corresponding tuple. It then permutes the tuple. A trapdoor and
document_id in the IT are permuted with shared keys kshare and
pshare. For word_counter, the servers encrypt the word_counter
with the shared key ksession, which can be computed with kshare
and pshare. The above process occurs for each query, and the

amount of server computations is O(1).

VI. Conclusion

This paper proposed a privacy-preserving database
encryption scheme. The proposed scheme shares a session key
between the user and server for the documents encrypted by a
user’s private key. They use the key to permute an index of a
database tuple once accessed. The user maintains the word call
cache WCC, and references it to permute a trapdoor or to
decrypt a word_counter. The server permutes a tuple’s value
with the session key for each search. A permuted tuple is
matched to a trapdoor. The server deletes the original tuple and
creates a new one. This process requires only O(1). The
proposed scheme hides the access pattern for each access.

References

[1] R. Curtmola et al., “Searchable Symmetric Encryption: Improved
Definitions and Efficient Constructions,” 13th ACM Conf.
Comput. Commun. Security, 2006.

[2] Y.C. Chang and M. Mitzenmacher, “Privacy Preserving Keyword
Searches on Remote Encrypted Data,” Applied Cryptography
Netw. Security Conf., 2005.

[3] Z. Yang, S. Zhong, and R. Wright, “Privacy-Preserving Queries
on Encrypted Data,” 11th European Symposium Research in
Security, 2006.

[4] M. Kantarcıoglu and C. Clifton, “Security Issues in Querying
Encrypted Data,” Purdue Computer Science Technical Report 04-
013, 2004.

[5] M. Abdalla et al., “Searchable Encryption Revisited: Consistency
Properties, Relation to Anonymous IBE, and Extensions,” Crypto,
2005.

[6] D. Song, D. Wagner, and A. Perrig, “Practical Techniques for
Searches on Encrypted Data,” Proc. IEEE Symp. Security Privacy,
2000, pp. 44-55.

[7] O. Goldreich and R. Ostrovsky, “Software Protection and

ETRI Journal, Volume 34, Number 1, February 2012 Daeseon Choi et al. 75

Simulation on Oblivious RAMs,” J. ACM, vol. 43, no. 3, 1996,
pp. 431-473.

[8] B. Chor et al., “Private Information Retrieval,” J. ACM, vol. 45,
no. 6, 1998, pp. 965-982.

[9] S.W. Smith and D. Safford, “Practical Private Information
Retrieval with Secure Coprocessors,” IBM Research Report, RC
21806, 2000.

[10] R. Ostrovsky and W.E. Skeith, “A Survey of Single-Database
Private Information Retrieval: Techniques and Applications,”
LNCS, vol. 4450, 2007, pp. 393-411.

[11] Q. Chai and G. Gondm, “Verifiable Symmetric Searchable
Encryption for Semi-Honest-but-Curious Cloud Servers.”
http://www.cacr.math.uwaterloo.ca/techreports/2011/cacr2011-
22.pdf

[12] E. Shi et al., “Multi-Dimensional Range Query over Encrypted
Data,” Proc. IEEE Symp. Security Privacy, 2007, pp. 350-364.

[13] H. Pang and K.L. Tan, “Verifying Completeness of Relational
Query Answers from Online Servers,” ACM Trans. Inf. Syst.
Security, vol. 11, no. 2, article 9, May 2008.

[14] M. Abdalla et al., “Searchable Encryption Revisited: Consistency
Properties, Relation to Anonymous IBE, End Extensions,” Proc.
Adv. Cryptology, LNCS, vol. 3621, 2005, pp. 205-222.

[15] J. Bethencourt, D. Song, and B. Waters, “New Techniques for
Private Stream Searching,” ACM Trans. Inf. Syst. Security, vol.
12, no. 3, article 16, Jan. 2009.

[16] P. Paillier, “Public-Key Cryptosystems Based on Composite
Degree Residuosity Classes,” Proc. Adv. Cryptology:
EUROCRYPT, LNCS, vol. 1592, 1999, pp. 232-238.

[17] H. Pang, J. Shen, and R. Krishnan, “Privacy-Preserving
Similarity-Based Text Retrieval,” ACM Trans. Internet Technol.,
vol. 10, no. 1, article 4, Feb. 2010.

[18] C. Wang et al., “Secure Ranked Keyword Search over Encrypted
Cloud Data,” Proc. Int. Conf. Distrib. Comput. Syst., 2010, pp.
253-262.

[19] N. Cao et al., “Privacy-Preserving Multi-keyword Ranked Search
over Encrypted Cloud Data,” Proc. IEEE INFOCOM, 2011, pp.
829-837.

[20] A. Boldyreva et al., “Order-Preserving Symmetric Encryption,”
Proc. Eurocrypt, LNCS, vol. 5479, 2009, pp. 224-241.

[21] H. Pang, J. Zhang, and K. Mouratidis, “Scalable Verification for
Outsourced Dynamic Databases,” Proc. 35th VLDB Conf., Aug.
2009, pp. 802-813.

[22] S. Papadopoulos, W. Cheng, and K.L. Tan, “Separating
Authentication from Query Execution in Outsourced Databases,”
Proc. 25th Int. Conf. Data Eng., Apr. 2009, pp. 1148-1151.

[23] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive Verifiable
Computing: Outsourcing Computation to Untrusted Workers,”
Proc. Adv. Cryptology: CRYPTO, 2010, pp. 465-482.

[24] C. Gentry, “Fully Homomorphic Encryption Using Ideal
Lattices,” Proc. 41st Annual ACM Symp. Theory Comput., 2009,

pp. 169-178.
[25] M. Dijk et al., “Fully Homomorphic Encryption over the

Integers,” Proc. Adv. Cryptology: EUROCRYPT, 2010, pp. 24-
43.

[26] A. Joux, “A One Round Protocol for Tripartite Diffie-Hellman,”
Proc. Algorithmic Number Theory, LNCS, vol. 1838, 2000, pp.
385-393.

Daeseon Choi received the BS in computer
engineering from Dongguk University, Rep. of
Korea, in 1995, the MS in computer
engineering from POSTECH, Rep. of Korea in
1997, and the PhD in computer science from
KAIST, Rep. of Korea in 2009. Since 1999, he
has been a member of research staff with ETRI,

Daejeon, Rep. of Korea. His main research areas are ID management,
mobile security, and personalization service.

Seung-Hyun Kim received the BS in computer
engineering from Kumoh National University
of Technology, Rep. of Korea, in 2002, and the
MS in computer engineering from POSTECH,
Rep. of Korea, in 2004. Since 2004, he has been
a member of research staff with ETRI, Daejeon,
Rep. of Korea. His main research areas are ID

management, mobile security, and personalization service.

Younho Lee received the BE, MS, and PhD in
computer science from KAIST, Rep. of Korea,
in 2000, 2002, and 2006, respectively. He
worked as a visiting postdoctoral researcher and
as a member of research staff at the Georgia
Tech Information Security Center from 2007 to
2009. He is currently an assistant professor in

the Department of Information and Communication Engineering,
Yeungnam University, Rep. of Korea. His research interests include
network security, applied cryptography, and multimedia security.

