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This paper proposes a privacy-preserving database 
encryption scheme that provides access pattern hiding 
against a service provider. The proposed scheme uses a 
session key to permute indices of database records each 
time they are accessed. The proposed scheme can achieve 
access pattern hiding in situations in which an adversary 
cannot access the inside of the database directly, by 
separating the entity with an index table and data table 
and permuting both the index and position where the data 
are stored. Moreover, it is very efficient since only O(1) 
server computation and communication cost are required 
in terms of the number of the data stored. It can be applied 
to cloud computing, where the intermediate entities such as 
cloud computing service provider can violate the privacy of 
users or patients. 
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I. Introduction 

Cloud services delegate local data to a remote third party and 
allow users to access their data anywhere, anytime. While 
cloud services have become more popular recently, they have 
many performance, security, and privacy requirements.  

Searchable encryption schemes can be used for cloud 
services to support security and privacy. There should be a way 
to separate users’ privacy from their service providers. In this 
case, it is good to use searchable encryption because it 
separates users’ information from their service providers and 
preserves the searchability of the encrypted data. Thus, an 
efficient data search on the encrypted data is possible.  

However, previous existing searchable encryption schemes 
are focused on performance, not high-level privacy such as 
hiding the access pattern [1]-[6]. Even if a database is 
encrypted, an access pattern can be leaked by monitoring data 
transmitted between a user and third party over time. An access 
pattern refers to the sequences and frequency of documents 
accessed by a user.  

Leaking an access pattern causes a significant loss of privacy 
to the user. For example, in stock trading applications, even if 
the messages about stock trading are encrypted, trading bias in 
a particular event, or the frequency of buying/selling a specific 
stock, can be exposed. Moreover, an access pattern helps 
predict the actual data, as in [3]. 

A few schemes that support an access pattern hiding property 
suffer from extreme inefficiency [7]. Thus, they are not used in 
practice.  

In this paper, we introduce a new encryption scheme that 
supports access pattern hiding, as well as searchability. We 
consider how the protocol can be made using the proposed 
scheme. The proposed scheme can be used in a specific 
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environment, where a cloud computing service provider is in 
the middle of the users and the data servers, and thus it can 
access all intermediate information transferred between them. 
The proposed scheme achieves the access pattern hiding 
property even with O(1) server computations and O(1) 
communication. This has not been previously suggested. 
Therefore, the proposed scheme provides a high level of 
privacy and efficiency.  

The organization of this paper is as follows. We show the 
related works in section II. Section III shows the motivation 
and presumed environment of the proposed scheme. Section 
IV details the proposed scheme itself. Section V analyzes its 
security and performance. Finally, we offer some concluding 
remarks in section VI. 

II. Related Works 

We categorize related work into three topics. Each topic is 
summarized in its own corresponding subsection. 

1. Access Pattern Hiding 

Much research has dealt with access pattern hiding thus far. 
The authors in [4] considered a secure database system that can 
hide query patterns. It employed the trusted computing device 
(TCD), and thus the secret values to encrypt the data and the 
codes for encrypting/decrypting the records are stored in TCD, 
while the actual data are stored in conventional storage. The 
hiding of access patterns is achieved since the cryptographic 
operations are done in TCD, and even the server cannot access 
its internals. However, there are some countries, such as Russia, 
that do not allow the use of the trusted platform module (TPM). 
Also, there are some privacy issues regarding the use of TPM. 
For example, it may occur that a user cannot use the 
application she wants to use because TPM does not allow it. 
Thus, it cannot be scaled in practice yet. The authors in [7] 
proposed oblivious RAM, where devices using oblivious 
RAM cannot know which part of the memory they are 
accessing. Thus, this supports access pattern hiding. However, 
a unit operation consumes a huge amount of cost. That is, it 
requires O(log3n) cost to access a single memory unit, where n 
is the number of unit items stored in the memory. Therefore, 
this approach does not seem practical. 

Among the research related with hiding an access pattern, [8], 
[9], and [10] deal with single-database private information 
retrieval (PIR). In [8], a server does not know the real index of 
the database a user accesses. According to [8], a user does not 
expose the access pattern. However, the scheme in [8] always 
handles unencrypted data and should touch every data item to 
hide the access pattern. Therefore, this scheme requires a 

number of operations which depend linearly on the size of the 
database. Consequently, the scheme in [8] requires much time 
applying the searchable symmetric encryption (SSE) because it 
runs on plaintexts.  

2. Searchable Encryption 

Some searchable encryption researches do not provide 
access pattern hiding [1]-[6], [11]. As far as we know, the 
scheme in [6] is the first approach dealing with searching 
encrypted data in a symmetric key setting. In [6], the scheme 
reveals the access pattern of keywords. The access pattern is 
revealed to the database manager, unlike in the proposed 
scheme, since it uses deterministic encryption when the 
keyword is encrypted. 

Two of the most representative schemes can be found in [1] 
and [5]. The authors in [5] mention the limitations of IND-CKA, 
which is used to prove the security in the previous related works, 
and modifies the definition of adaptive security. In addition, [1] 
proposes the SSE-1 and SSE-2 algorithms. SSE-1 was proved 
to be non-adaptive secure and manages the document’s index 
using a hash table and a linked list. However, SSE-1 does not 
meet the adaptive security [1] because the linked list in SSE-1 
fixes the association to documents and exposes the order and list 
of returned documents for the same word.  

For adaptive security, SSE-2 makes trapdoors that are 1:n 
mapped with a keyword, and does not use the linked list in 
SSE-1. To return the index of same sized documents, SSE-2 
fixes the number of trapdoors as the size of the longest 
plaintext document ‘max’. Therefore, there is some overhead. 
For example, in the case in which the number of documents 
containing word w is 3, the trapdoors are Tw,1,Tw,2,Tw,3,….,Tw,max. 
The scheme in [1] hides the search pattern and satisfies the 
adaptive security, as there are different ‘max’ trapdoors for a 
word. However, the indexes of returned documents and 
trapdoors for the same word are always identical. Therefore, 
the scheme in [1] exposes the access pattern. 

Recently, [11] was suggested to support the verifiability of 
search result using trie and keyed-hash function. Unfortunately, 
it does not support the access pattern hiding either. 

Apart from the above approaches, some keyword searching 
schemes are based on public key cryptography [12]-[14]. In 
general, they support high levels of security and privacy such 
as access pattern hiding. However, as [1] mentioned already, 
this requires heavy computational cost for a single search 
operation. Thus, they do not look practical as symmetric 
searchable encryption schemes due to this property.  

3. Other Related Works on Database Security 

Many works deal with database security. The scheme in [15] 
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has a somewhat different setting from the proposed scheme, in 
the sense that servers can access the data while the search 
keywords are hidden from the servers. In the proposed scheme, 
both the search keywords and data are regarded as sensitive 
information, and therefore they are encrypted. Also, [15] is 
based on Paillier’s homomorphic cryptosystem in [16]. This is 
a public key cryptosystem, and therefore it takes more 
resources than a symmetric cryptosystem.  

Unlike the proposed scheme, whose main target is searching 
based on exact matching, [17] is aimed at similarity-based 
matching. The schemes in [18], [19] can be classified into this 
type. Using the similarity measure, they suggested a ranked 
search algorithm to retrieve up to k related documents. In [18], 
the scheme employs the order-preserving symmetric 
encryption [20] to protect the similarity score and to keep 
maintaining ranked searchability. In [19], the authors proposed 
a multikeyword search, where a query has more than a single 
word. As the authors show in [18], [19], they do not support 
access pattern hiding. Similarity-based matching is useful for 
text retrieval, where exact matching does not produce the 
information the user needs. Thus, there is little relevance 
between [17]-[19] and the proposed work. 

The authentication of data in an outsourced database is dealt 
with in [21], [22]. The service provider may forge the stored 
data due to the separation of data owner and the service 
provider (outsourced database). Some type of security 
mechanism should be supported to prevent such forgery and 
provide assurance of the query result. This issue is orthogonal 
to the proposed work because our work is about privacy 
preservation on an encrypted database, while [21], [22] are 
about the authentication of data that are in clear plaintext. The 
manner in which to verify the query result in a database as a 
service model is dealt with in [13]. It employs the aggregate 
signature and Merkle hash chain to show the correctness of the 
result of the range query.  

Gennaro and others proposed non-interactive verifiable 
computing [21] based on a fully homomorphic encryption 
scheme [22], [23] for secure cloud computing. In [23], the 
server can let the client compute some functions with some 
input values without letting the client know them. The client 
does not even know the actual results of the computation. This 
property can be achieved using a fully-homomorphic 
encryption scheme [24], [25]; even without decrypting 
ciphertexts, it is possible to compute any kind of function 
taking the values of the plaintexts hidden in the ciphertexts as 
inputs. In addition, the client can prove to the server that the 
function has been computed correctly, with very little 
computation overhead compared to the original work to be 
done. Unfortunately, it cannot be used in practice as it takes a 
significant amount of time, that is, on the order of tens of  
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minutes, to compute even very primitive computations, such as 
bit-wise addition and multiplication, because the underlying 
homomorphic encryption scheme is very slow [23] even when 
using a strong contemporary machine such as an IBM System 
x3500 server.  

III. Motivation and Problem Definition 

This section shows the need for a new scheme and states the 
problem definition. We also explain the environment assumed 
in this paper. Finally, we define the protocol we need to solve 
the problem. 

1. Motivation 

Suppose there are three types of entities: users, a service 
provider, and a database. Users store their data in a third-party 
database in an encrypted form. They perform this action via the 
service provider. Therefore, the service provider does not have 
information about the databases, and vice versa. Instead, the 
service provider links the users to the databases. The service 
provider executes data search/add/delete operations after 
receiving the users’ requests, and it returns the results to them 
after the third-party databases send the search/add/delete results 
to the service provider.  

In this situation, we want to preserve the privacy of the users 
from third-party databases and their service provider. In this 
case, we can provide searchability and privacy by employing 
searchable encryption [1]-[6]. Unfortunately, the existing 
schemes cannot hide the access pattern of users from the 
service provider. In view of third-party databases, the threat of 
a privacy violation is not a big issue because they do not know 
the identities of the users behind the service provider. However, 
the service provider can be hostile in terms of the users’ privacy 
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because the private information of users has a commercial 
value under certain situations.  

Figure 1 shows the environment we explained thus far. It is 
well suited to a cloud-computing environment, where users 
outsource the search ability as well as the databases to external 
companies.    

We have termed the scheme searchable symmetric 
encryption with access pattern hiding (SSE-APH) because it 
should support searchability and access pattern hiding.  

2. Scenario of Proposed Scheme 

We first introduce the entities appearing in the scenario. Users 
have documents, make indices for them, and store them in the 
index server and document server. In addition, all 
communication between the user and servers is via the service 
provider. Therefore, there are four types of entities in the system. 

Figure 2 shows the scenario of the proposed scheme. The 
scenario has two phases. At the initial phase, the secret keys are 
shared among the user and servers. The service provider is 
assumed not to execute an active attack but perform passive 
attacks. We suppose this is done with an existing scheme such 
as a tripartite key exchange protocol [26]. Also, the user 
generates indices for the documents stored and sends both the 
documents and indices to the document server. The document 
server stores the documents in the appropriate places indicated 
by the indices. It removes the indices after storage. The index 
server only has the indices coming from the user. We separate 
the index server and document server to support flexibility. 
Therefore, it can be combined into a single entity under certain 
environments.   

The document searching procedure is shown at the bottom 
section of Fig. 2. Whenever a user wants to retrieve documents 
that are mapped to a key w, she generates a trapdoor for the 
keyword. The trapdoor is sent to the service provider, and it 
retrieves the document IDs that correspond to the trapdoor 
from the index server. They are forwarded to the document 
server and the server replies with the corresponding encrypted 
documents to the service provider. The service provider sends 
them to the user after they receive them.  

3. Problem Definition 

We first describe the properties that the proposed scheme 
should meet in terms of security and functionality. Then, we 
discuss why such requirements are needed.  

i) Searchability. The service provider can obtain the 
documents that the user wants and send them back to the 
user. 

ii) Confidentiality 
• No entities other than the user can see the plain form of  
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the documents. 

• The service provider cannot make a new trapdoor 
without the user’s intervention.  

iii) Access pattern hiding (from the service provider). The 
service provider cannot obtain the document access 
pattern of the user without the help of other entities.  

iv) Efficiency. The search complexity should not depend on 
the size of the stored documents.  

The requirements are analogous to previous works [1], [2], 
[6], [18], [19] except the access pattern hiding requirement and 
the efficiency requirement. Since access pattern hiding 
requirement includes weak privacy requirements such as 
keyword privacy and trapdoor unlinkability in [18], we only 
address access pattern hiding. The efficiency requirement is 
somewhat stronger than those in the previous works [11], [18], 
[19] in the sense that the communication and computation of 
the server caused by searching is independent of the number of 
data stored. To our knowledge, no methods support both the 
third and fourth properties [1]-[6], [11], [18], [19]. Our main 
contribution is to propose a scheme meeting all the above 
requirements.  

We assume that all of the entities in the scenario maintain the 
protocol. As an active attack is out of the scope of this paper, 
we do not consider that type of attack and only consider 
passive attacks. The servers can try to break the confidentiality 
of a user’s data. The service provider is the main possible 
adversary in the scenario. It can try to break the confidentiality 
including the trapdoor and access pattern hiding.  

IV. Proposed Scheme 

This section proposes a searchable encrypted database 
scheme that satisfies security and privacy. We formally define 
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the proposed scheme and its security model and prove that the 
proposed scheme meets the security model. The proposed 
scheme and its security model are based on the discussion thus 
far. 

1. Notations 

We borrow the notations from the authors in [1] and the data 
structures used by their construction. Let Δ = {w1,…, wd} be a 
dictionary of d words and 2Δ be the set of all possible 
documents. Further, let D  2⊆ Δ be a collection of n documents 
where D = (D1,…,Dn) and 22

Δ

is the set of all possible 
document collections. Let id(D) be the identifier of document 
D, where the identifier can be any string that uniquely identifies 
a document. Let ,′Δ ,′Δ ∈ Δ  be the set of distinct words that 
exist in document collection D, and D(w) be the set of 
identifiers of documents in D that contain the w, such as a 
memory location. We denote by D(w) the lexicographically 
ordered list consisting of the identifiers of all documents in D 
that contain the w.  

We write x←X to represent an element x being sampled from 
a distribution X, and ←

R
x X  represents an element x being 

sampled uniformly from set X. The output x of an algorithm A 
is denoted by x←A. We write || to denote a string concatenation. 
We say a function ν:N→N is negligible if for every polynomial 
p(·) and all sufficiently large k, ν(k) <1 ( ).p k  

We sometimes refer to D(w) as the outcome of a search for w 
and to the sequence (D(w1), . . . ,D(wn)) as the access pattern of 
a client. We also define the search pattern of a client as any 
information that can be derived from knowing if two arbitrary 
searches were performed for the same word. 

In addition to encryption schemes, we also make use of a 
pseudo-random permutation, which is a polynomial-time 
computable function that cannot be distinguished from a 
random function by any probabilistic polynomial-time 
adversary. 

2. Definitions 

Here, we define the proposed SSE-APH. We extend the 
definition of SSE given in [1]. Note that some of the names of 
the algorithms such as BuildIndex and Trapdoor are borrowed 
from previous works [1], [18], [19]. However, the details of the 
proposed scheme are different from them.  

Definition 1. Searchable symmetric encryption scheme with 
access pattern hiding. An SSE-APH scheme is a collection of 
five polynomial-time algorithms and a protocol (Keyshare, 
BuildIndex, Trapdoor, Search_Index, and Search_Document): 

• KeyShare(1k) is a probabilistic key sharing protocol 
between the user U, the index server, and the document 

server. The result of this protocol is that all the entities 
share a common secret key K. The length of K is 
polynomially bounded in k. 

• BuildIndex(K,D) is a (possibly probabilistic) algorithm run 
by user U to generate indexes. It takes a secret key K and 
D, which is a document collection polynomially bounded 
in k, as inputs, and returns an index I such that the length of 
I is polynomially bounded in k. 

• Trapdoor(K, w, i) is run by the user U to generate a trapdoor 
for a given word. It takes a secret key K, a w, and an index 
i as inputs, and returns a trapdoor Tw,i. 

• Search_Index(IT, Tw,i) is run by the index server IS to 
search for the i-th document in D that contains a w. It takes 
an index table IT for a collection D, and a trapdoor Tw,i for 
a w, as inputs, and returns the i-th identifier of documents 
containing w. 

• Search_Document(DT, document_id) is run by the 
document server DS to retrieve an encrypted document 
identified by the id. DS searches a data table DT with id 
and returns a corresponding document to the user U. 

The following definitions are given to define the access 
hiding property and other security properties. These 
definitions are similar to those in [1]. However, there is a 
slight difference due to the differences of the setting. We 
borrow the adaptive security definition of SSE-APH from [1] 
because SSE-APH is included in SSE and needs to have the 
same property in terms of confidentiality. Therefore, 
definition 5 is borrowed from [1].  

Definition 2. History [1]. Let D be a collection of n 
documents and ∆ be a dictionary. A history Hq, Hq ∈ 22

Δ
× ∆q, 

is an interaction between a client and the document server via 
the service provider over q queries. The partial history      
Hq

t ∈ 22
Δ

× ∆t of a given history Hq = (D,w1,…,wq), is the 
sequence Hq

t = (D,w1, . . . ,wt), where t ≤ q. 
Definition 3. View [1]. Let D be a collection of n documents, 

index I for collection D, and Hq = (D, w1, . . . ,wq) be a history 
over q queries. An adversary’s view of Hq under secret key K is 
defined as VK(Hq) = (I, Tw,1, . . . , Tw,q ). The partial view VK

t (Hq) 
of a history Hq under secret key K is the sequence VK

t (Hq) = (D, 
Tw,1, . . . , Tw,t), where t ≤q. 

Definition 4. Trace [1]. Let D be a collection of n documents 
= (d1,…,dn), D(w) be a list of documents that contain a w, E(di) 
be an encrypted version of document di, and Hq = (D, w1,... ,wq) 
be a history over q queries. The trace of Hq is the sequence 
Tr(Hq) = (E(d1),…,E(dn), D(w1),…,D(wq), |D(w1)|,…,|D(wq)|, 
Πq, Γq) (Π: search pattern, Γ: the number of queried words). 

Definition 5 [1]. Adaptive semantic security for SSE. An 
SSE scheme is adaptively semantically secure if for all q  ∈ N 
and for all (non-uniform) probabilistic polynomial-time 
adversaries A, there exists a (non-uniform) probabilistic 
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polynomial-time algorithm (the simulator) S such that for all 
traces Trq of length q, all polynomially samplable distributions 
Hq over {Hq ∈ 22

Δ
× ∆q: Tr(Hq) = Trq} (that is, the set of 

histories with trace Trq), all functions f : {0, 1}m  {0, 1}poly(m) 
(where m = |Hq|), all 0 ≤ t ≤ q, and all polynomials p and 
sufficiently large k: 

1Pr ( (H )) (H ) Pr (Tr(H )) (H ) ,
( )

t t t t
K q q q qA V f S f

p k
⎡ ⎤ ⎡ ⎤= − = <⎣ ⎦ ⎣ ⎦  

where Hq
R← Hq, K R← KeyShare(1k), and the probabilities are 

taken over Hq and over the internal coins of KeyShare, A, S and 
the underlying BuildIndex algorithm. 

Definition 6. Hiding access pattern/hiding frequency. 
History Hq for q-th queries, two arbitrary trapdoors Tw and Tw' 
for an arbitrary w, and the search results R(Tw) and R(Tw'), for 
all polynomial-time circuit families {Ak}, efficiently large k, 
and polynomial p, the following inequality should hold:  

1Pr (H , ( )) 1 Pr (H , ) )) 1 .
( )k q w k q wA R T A R T

p k
⎡ ⎤ ⎡ ⎤′= − = <⎣ ⎦ ⎣ ⎦  

3. Algorithms  

We propose a searchable encryption scheme for a single user.  
These algorithms are the implementations of those shown in 
definition 1 to make them work in the scenario shown in 
section III.  

A user U stores n encrypted documents in collection      
D = (d1,…,dn) at the document server DS and retrieves a 
specific document with a document_id. DS maintains the data 
table DT that keeps the encrypted documents. The index server 
IS manages the index table IT generated by U. U keeps a cache 
named word call cache (WCC). Let π(•) be a pseudo-random 
permutation and E(•) be a semantically secure symmetric 
encryption scheme. All the algorithms are shared among U, DS, 
and IS. Tables 1, 2, and 3 show the schemas of IT, DT, and 
WCC. 

A tuple of the IT is assigned to each document in D(w). D(w) 
is a collection of documents containing the w ′∈ Δ . Thus, the 
IT has | |

1| ( ) |′Δ
=∑ ii D w tuples. The trapdoor is generated with a 

concatenation of a w and an index number i that represents the 
order in D(w).  For example, suppose that d‘coin’,1 is the first 
document in D(‘coin’), the corresponding tuple of IT uses 
‘coin’ and the order ‘1’ to make the trapdoor. For each w, the 
IT allocates |D(w)| tuples, and the initial values of each tuple’s 
trapdoor are πkuser(w||1),…, πkuser (w || |D(w)|) in order.  

The word_counter keeps the number of documents that 
contains each word. An attacker might predict their relationship 
more easily if the tuples that have the same word_counter 
value may contain the same word. Therefore, the number is 

Table 1. Schema of IT. 

Name Initial value Description 

trapdoor πkuser (w||i) 

-Primary key 
-Permutated concatenation of a 
w and an index i, where i is 
index of D(w),1 ≤ ≤i |D(w)| 

document_id πkuser(id(di)) 

Permutated index of a document 
di. d is the i-th  document in 
D(w), 1 ≤ ≤i |D(w)|. This is the 
same as the document_id of DT.

word_counter Ekw(id(di)|||D(w)|) 

Encrypted concatenation of a 
document di and |D(w)|. |D(w)| is 
the number of documents that 
contain a w. 

Table 2. Schema of DT. 

Name Initial value Description 

document_id πkuser(id(d))
-Primary key 
-Permutated identifier of document d

with a user’s symmetric key kuser 

document Ekuser(d) An encrypted document d with a user’s 
symmetric key kuser 

Table 3. Schema of WCC. 

Name Value Description 

word w Word queried by a user 

round r Number of queries corresponding to a w 

 

 
combined with the index of a document and then encrypted. It 
indicates the number of documents that contain a word. 
Therefore, it allows for an efficient sequential search. 

WCC is maintained by U. The round items in all tuples are 
initialized to zero. Whenever a query corresponding to a w is 
executed, the round in the tuple WCC[w] is increased. If a w is 
used for the first time, then WCC[w] is 1 after the search is 
finished. As the number of queries about w increases, the round 
value in WCC[w] also increases.  

U does not know IS and DS before it stores data at the IS and 
DS. If the protocol begins, we assume that the IS and DS are 
authenticated by U. U does not have to be authenticated 
because there is no reason that the service provider makes U 
use the servers without being authenticated. Therefore, the 
service provider certifies the trust of U to the servers. However, 
we also suppose that the service provider and servers do not 
collaborate with each other since we assume they do not 
belong to the same company. 

We show the descriptions of the implementations of the 
algorithms below.  
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A. KeyShare(1k) 

Let k be security parameters and let (G, E, D) be a 
semantically secure symmetric encryption scheme with E : {0, 
1}k × {0, 1}* → {0, 1}*. In addition, we make use of one 
pseudo-random permutation π with the following parameters:  

π : {0, 1}k × {0, 1}k → {0, 1}k. 
As we mentioned before in the paper, by using the existing 

protocol such as tripartite key exchange [26], U, IS, and DS 
share two keys kshare and pshare. With both values, a session 
specific key kn

session for session n is generated by 
kn

session πpn(kshare), where pn is the result of the n-th consecutive 
execution of the pseudo random number generator with pshare as 
a random seed. Finally, U generates kuser

R← {0,1}k. This is only 
used by U.  

B. BuildIndex(K, D) 

K denotes the (kshare, pshare., kuser) pair, and D is the entire set of 
documents. First, U scans D and generates a distinct word list 

′Δ in which all element words are contained in D. Then, for 
each w ′∈ Δ , U generates a list of documents D(w)⊆ D that 
contains w. U generates an IT that maintains the list of 
document indices to be used for searching the DT. Table 1 
shows the schema of the IT. Next, U generates a DT to save the 
documents. Table 2 shows the schema of the DT. From the rest 
of the algorithm description, we assume the first item in the 
schema is an index of the table, because it is the primary key. 
Therefore, we represent a tuple in IT as IT[πkuser(w||i)] = 
<πkuser(id(di)), Ekuser(id(di)|||D(w)|)>. Similarly, we represent a 
tuple in DT as DT[πkuser(id(d))] = Ekuser(d). From the description 
of the tuples, it is found that the index of DT is stored as the 
second item in IT. This is the document_id. Finally, the 
word_counter is re-encrypted with the same key, and thus the 
resulting value changes.    

C. Trapdoor(K, w, i) 

For a given w, a user U generates a trapdoor for the service 
provider to get the i-th document containing w. If U searches 
the word for the first time, the trapdoor is T1

w,i  πkuser(w||i). For 
the j-th time, Tj

w,i  πkw(Tj-1
w,i), where kw πpshare(w||0). As 

explained before, WCC stores the number of searches for a w. 
Thus, U can compute Tj

w,i from scratch. U can store the 
trapdoor for the previous search to reduce the amount of 
computations. In this case, the amount of computations 
becomes O(1).  

D. Search_Index(IT, Tw,i) 

IS uses this algorithm to determine the corresponding index 
for a given trapdoor Tw,i.. It includes the operations for updating 

IT to support access pattern hiding. Using the trapdoor received, 
this algorithm returns the corresponding document_id. If such a 
tuple does not exist, then it returns the null message. 

Next, the tuple with Tw,i as the primary key (index) is 
updated: the first item, that is, the index, is changed to πkw(Tw,i), 
where kw πpshare(w||0). The second item, that is, document_id, 
is changed to πk'w (document_id), where k'w  πpshare(w||1).  

E. Search_Data(DT, document_id) 

DS uses this algorithm to retrieve the document 
corresponding to the given document_id on DT. DS finds the 
document that is in the same tuple as document_id. Then, 
returns the document. If no such document_id exists, then it 
returns a null message. If it does not return a null message, the 
tuple with the return value in DT is updated: the document_id is 
changed to πk'w (document_id), where k'w  πpshare(w||1). In 
addition, the document in the tuple is also re-encrypted, and 
thus it has a different form. The access hiding property of the 
proposed scheme is guaranteed due to this procedure.  

4. Search Protocol 

This subsection shows how U initializes the system with 
other entities. Then, it also shows how U searches documents 
with a key w ′∈ Δ .  

A. Initialization Protocol 

U, IS, and DS share kshare and pshare using the KeyShare(1k) 
protocol. This protocol is executed via the service provider. 
Next, U executes the BuildIndex algorithm with K=(kshare, kuser, 
pshare) and the set of documents D. The result of BuildIndex IT 
and DT are sent to the IS and DS, respectively. Then, U 
removes them from its storage. 

B. Search Protocol 

U runs the Trapdoor(K, w, 1) algorithm to obtain the first 
trapdoor for w, Tj

w,1. U sends this to the IS. IS sends 
word_counter back to the user. If such a word does not exist in 
IT, IS sends a dummy ciphertext to U so that the service 
provider cannot distinguish a case in which no such word 
exists from one in which it does. Next, U runs Trapdoor(K, w, 
i), where i=1,..,word_counter. Thus, it creates the other 
trapdoors. Suppose wmax is at the word that most documents 
have. Then, the other |D(wmax)| – word_counter dummy 
trapdoors are generated, and thus the service provider cannot 
determine the actual number of documents. These dummy 
messages will produce the dummy indices by IT. They are sent 
to DT via the service provider. They also produce many 
dummy encrypted documents that are transferred back to U. 
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Regardless, the number of messages is fixed to |D(wmax)|: the 
service provider cannot exploit the knowledge about the 
number of messages transmitted to determine the access 
pattern.  

Except in the case of dummy messages, the correct trapdoors 
are sent to IS, and IS gives DS the corresponding indices of the 
documents via the service provider after running the 
Search_Index(IT, Tw,i) algorithm for each of the (correct) 
trapdoors. DS returns the corresponding documents back to U 
via the service provider.  

V. Analysis 

In this section, we analyze the proposed scheme by 
comparing it to previous works.  

1. Security and Privacy 

Theorem 1. The proposed SSE-APH is an adaptive secure 
scheme based on definition 5. 

Proof. For proof, we follow the simulation-based approach 
of definition 5. We describe a probabilistic polynomial-time 
simulator S that has the ability to use the trace of a partial 
history. We prove that for 0≤t≤q, Vq

t* is indistinguishable from 
VK

t(Hq), which is the output of simulator S(Tr(Hq
t)). 

VK(Hq) = {DT, IT, T1,….,Tq }, 
VK

t(Hq) = {DT, IT, T1,….,Tt }, where 0≤t≤q, 
Tr(Hq) = {E(d1),…, E(dn), D(w1),…,D(wq), |D(w1)|,…,|D(wq)|, 

Πq, Γq }, 
Tr(Hq

t) = {E(d1),…, E(dn), D(w1),…,D(wt), |D(w1)|,…,|D(wt)|, 
Πt, Γt }, where 0≤t≤q. 

The simulator S knows about pseudo-random permutations π 
and f. Now, we generate VK

t* = {DT*,IT*,T1
*,…,Tt

*} using 
simulator S.  

For t=0, there is no communication between server and 
client. Simulator S generates V0

* = {DT*, IT*}.  
• DT*: for 0≤i≤m, simulator S generates a random string     

αi
R← {0,1}k and sets DT*[αi] = E(di). 

• IT*: for 0≤i≤m, simulator S generates random strings   
βi,γi,δi

R← {0,1}k and sets IT*[βi] = <γi,δi >. 
Simulator S knows E(di) but does not know its index, which 

is the output of a pseudo-random permutation with the seed 
kuser. Therefore, simulator S sets E(di) to random locations in the 
DT*. If DT* and DT are distinguishable, it means someone can 
distinguish between the output of a pseudorandom permutation 
and a random string. IT* is also indistinguishable from IT. The 
reason for this is that IT is constructed based on a semantically 
secure encryption scheme, and is the output of a pseudorandom 
permutation with seed kuser. If IT* and IT are distinguishable, 
someone can distinguish between the output of pseudorandom 

permutation and a random string, or between the output of a 
semantically secure ciphertext and a random string. 

For 1≤t≤q, simulator S generates VK
t*. Simulator S is adaptive, 

so it can use V0
* and VK

t-1*. Let simulator S generate a trapdoor 
for wt. Then, simulator S checks if the trapdoor for wt has been 
used before through Πt-1. If the trapdoor has not been used 
before, simulator S generates a random address addrr and sets 
the IT*[addrr] = <γi,δi > and the Tt

* = addrr. Otherwise, 
simulator S obtains information regarding about how many 
queries corresponding to wt have been asked through Γt. Let us 
call this c. Now, simulator S executes step 3 of the BuildIndex 
algorithm using c instead of WCC[wt]. However, simulator S 
does not know about kuser, kshare, and pshare, and thus there is no 
choice except to use a random string. This is the same for DT*. 
Therefore, we can say that Vq

t* and VK
t(Hq) are 

indistinguishable by definition 5.                      □ 
Theorem 2. The proposed scheme hides access 

pattern/hiding frequency. 
Proof. For every wi in IT, let the number of queries be ti and 

the document index returned is then 1−t
ksE (πkc(id(D(wi))). The 

size of the output of the encryption scheme E:{0,1}*×{0,1}k→ 
{0,1}* is a fixed number, say r. Thus, the range of the domain is 
2r. Therefore, two outputs from one word would be 
distinguishable with probability 1/2r.                   □ 

For each trapdoor and document_id used, the proposed 
scheme permutes them by using a shared key between U and 
server S. The access pattern is not revealed with the history of 
trapdoors and document_ids because every trapdoor and 
document_id is unique. According to the definition of the 
random permutation, every trapdoor and document_id is used 
at most once and is indistinguishable from one another. In 
addition, for each session, the different seed value of the 
permutation is allocated. 

Even for the same w, generated trapdoors Tw,1,…,Tw,|D(w)|  
differ from each other. Therefore, like a coin toss, an adaptive 
adversary cannot distinguish if two trapdoors are generated 
from the same word. 

2. Performance 

We quote the performance of the previous works from [1]. 
Table 4 shows the performance of the proposed scheme. We 
deduce each result from the procedure for generating trapdoors 
and searching documents for a word. n is the number of 
documents in document collection D and is the standard of the 
time complex. The server computation is the cost per returned 
document. The number of rounds only considers the interaction 
rounds between a server and user. The communication cost 
only considers a message’s overhead, which is transmitted 
from the user to the server. That is, we omit the size of 
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Table 4. Properties and performances (per query) of various SSE schemes (n: the number documents stored in DS). 

Properties Proposed scheme [7] [2] SSE-1 [1] SSE-2 [1] [3] 

Access pattern Y Y N N N N 

Adaptive adversaries Y Y N N Y N 

Server computation O(1) O(log3n) O(n) O(1) O(1) O(1) 

Server storage O(n) O(n*log2n) O(n) O(n) O(n) O(n) 

Number of rounds O(1) O(logn) 2 1 1 O(1) 

Communication O(1) O(log3n) O(1) O(1) O(1) O(1) 

 

extracted documents that the server returns. The server storage 
includes the stored database, table, and keys. 

A. Server Storage 

DS stores n encrypted documents in the DT for the proposed 
scheme. In IT, for distinct words ′Δ  that contain n documents, 
the server allocates |D(w)|-th tuples for each w ′∈ Δ . That is, IT 
has | |

1| ( ) |ii D w′Δ
=∑ tuples. In addition, when the servers establish 

a session for a user, the storage requirement is increased two-
fold. They replicate the user’s DT and IT. Therefore, the 
storage overhead is | |

12 ( | ( ) |) O( ),iin D W n′Δ
=

× + =∑  which is 
the same as in [1]. 

B. Number of Rounds 

In the proposed scheme, a user generates a trapdoor Tw,1 and 
query to the servers for a w. From the servers’ response, the 
user obtains a document_id of the first document and the 
number of entire documents |D(w)| that contain the w. If  
|D(w)| > 1, the user proceeds with the search further by an extra 
of |D(w)| – 1 rounds. We do not include the search of DT with 
document_ids. Namely, the proposed scheme requires 
O(|D(w)|) = O(1) rounds.  

C. Communication 

The trapdoor of w, Tw,i, is πkw
j(πkuser(w||i)), where 1≤i≤ |D(w)|, 

0≤j≤t, and t is the number of searches for w. Due to the random 
permutation π : {0, 1}k × {0, 1}k → {0, 1}k, the size of a 
message for the server is O(k) = O(1) because k is less than a 
few hundred and is a fixed number. 

D. Server Computation 

For w, IS searches the IT with Tw and retrieves a 
corresponding tuple. It then permutes the tuple. A trapdoor and 
document_id in the IT are permuted with shared keys kshare and 
pshare. For word_counter, the servers encrypt the word_counter 
with the shared key ksession, which can be computed with kshare 
and pshare. The above process occurs for each query, and the 

amount of server computations is O(1). 

VI. Conclusion  

This paper proposed a privacy-preserving database 
encryption scheme. The proposed scheme shares a session key 
between the user and server for the documents encrypted by a 
user’s private key. They use the key to permute an index of a 
database tuple once accessed. The user maintains the word call 
cache WCC, and references it to permute a trapdoor or to 
decrypt a word_counter. The server permutes a tuple’s value 
with the session key for each search. A permuted tuple is 
matched to a trapdoor. The server deletes the original tuple and 
creates a new one. This process requires only O(1). The 
proposed scheme hides the access pattern for each access.  
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