DOI QR코드

DOI QR Code

6xxx Series Al Alloy Sheets with High Formability Produced by Twin-roll Strip Casting and Asymmetric Rolling

쌍롤 박판주조법 및 이속압연으로 제조한 고성형성 6xxx계 Al 합금 판재

  • Kim, Hong-Kyu (Department of Material Science and Engineering, Korea University) ;
  • Cho, Jae-Hyung (Light Metal Division, Korea Institute of Materials Science) ;
  • Kim, Hyoung-Wook (Light Metal Division, Korea Institute of Materials Science) ;
  • Lee, Jae-Chul (Department of Material Science and Engineering, Korea University)
  • 김홍규 (고려대학교 신소재공학과) ;
  • 조재형 (한국기계연구원 부설 재료연구소 구조재료연구본부) ;
  • 김형욱 (한국기계연구원 부설 재료연구소 구조재료연구본부) ;
  • 이재철 (고려대학교 신소재공학과)
  • Received : 2011.10.21
  • Published : 2012.07.25

Abstract

We report on the feasibility of producing 6xxx series Al alloy sheets using a combination of twin-roll strip casting and asymmetric rolling. The Al alloy sheets produced in this study exhibited an excellent formability ($\bar{r}=1.2$, ${\Delta}r=0.17$) and mechanical properties (${\sigma}_{TS}{\sim}260MPa$, ${\varepsilon}>30%$), which cannot be feasibly obtained via the conventional technique based on ingot casting and conventional rolling. The enhanced formability as evaluated in terms of $\bar{r}$ and ${\Delta}r$ was clarified by examining the evolution of textures associated with strip casting and subsequent thermo-mechanical treatments. The evaluation of the formability leads us to conclude that the combined technique based on strip casting and asymmetric rolling is a feasible process for enhancing the formability of Al alloy sheets to a level beyond which the conventional technique can reach.

Keywords

Acknowledgement

Supported by : 한국부품소재산업진흥원

References

  1. J. H. Han, K. H. Oh, H. K. Seok, Y. H. Chung, and J. C. Lee, J. Kor. Inst. Met. & Mater. 39, 1330 (2001).
  2. J. H. Han, J. Y. Suh, K. H. Oh, and J. C. Lee, Acta Mater. 52, 4907 (2004). https://doi.org/10.1016/j.actamat.2004.06.045
  3. B. A. Riggs, Metall. Mater. Trans. B 4, 1430 (1973). https://doi.org/10.1007/BF02644549
  4. B. H. Cheon, J. H. Han, H. W. Kim, and J. C. Lee, Korean J. Met. Mater. 48, 387 (2010). https://doi.org/10.3365/KJMM.2010.48.05.387
  5. H. W. Kim, S. S. Jeong, C. Y. Lim, and S. B. Kang, Aluminum alloys, Proceedings of the 11th International conference on Aluminum alloys, ISBN 978-3-527-32367-8, 3, 1707 (2008).
  6. H. W. Kim, J. H. Cho, C. Y. Lim and S. B. Kang, Key Engineering Mater. 443, 45 (2010). https://doi.org/10.4028/www.scientific.net/KEM.443.45
  7. H. J. Bunge, Texture Analysis in Materials Science, Butterworth, London (1982).
  8. W. C. Liu and J. G. Morris, Scr. Mater. 52, 1320 (2005).
  9. W. C. Liu and J. G. Morris, Mater. Sci. Eng. A 402, 215 (2005). https://doi.org/10.1016/j.msea.2005.04.040
  10. W. F. Hosford and R. M. Caddell, Metal Forming: Mechanics and Metallurgy, Prentice Hall, Englewood Cliffs, NJ, 274 (1993).
  11. P. H. Lequeu and J. J. Jonas, Metall. Mater. Trans. A 19, 105 (1988). https://doi.org/10.1007/BF02669819
  12. K. M. Lee, H. G. Kang, M. Y. Huh, and O. Engler, Met. Mater. Int. 16, 851 (2010). https://doi.org/10.1007/s12540-010-1025-4
  13. T. Kamijo, A. Inoue, and H. Fukutomi, Acta Mater. 41, 1245 (1993). https://doi.org/10.1016/0956-7151(93)90175-R
  14. K. H. Kim and D. N. Lee, Acta Mater. 49, 2583 (2001). https://doi.org/10.1016/S1359-6454(01)00036-2
  15. M. Y. Huh, S. Y. Cho, and O. Engler, Mater. Sci. Eng. A 315, 35 (2001). https://doi.org/10.1016/S0921-5093(01)01207-2
  16. J. H. Han, J. Y. Suh, K. K. Jee, and J. C. Lee, Mater. Sci. Eng. A 477, 107 (2008). https://doi.org/10.1016/j.msea.2007.04.117