DOI QR코드

DOI QR Code

Effects of Nickel and Iron Oxide Addition by Milling under Hydrogen on the Hydrogen-Storage Characteristics of Mg-Based Alloys

  • Song, Myoung Youp (Division of Advanced Materials Engineering, Department of Hydrogen and Fuel Cells, Hydrogen&Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University) ;
  • Baek, Sung Hwan (Division of Advanced Materials Engineering, Department of Hydrogen and Fuel Cells, Hydrogen&Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University) ;
  • Park, Hye Ryoung (School of Applied Chemical Engineering, Chonnam National University) ;
  • Mumm, Daniel R. (Department of Chemical Engineering and Materials Science, University of California Irvine)
  • Received : 2011.11.09
  • Published : 2012.01.25

Abstract

Samples of pure Mg, 76.5 wt%Mg-23.5 wt%Ni, and 71.5 wt%Mg-23.5 wt%Ni-5 wt%$Fe_2O_3$ were prepared by reactive mechanical grinding and their hydriding and dehydriding properties were then investigated. The reactive mechanical grinding of Mg with Ni is considered to facilitate nucleation and to shorten diffusion distances of hydrogen atoms. After hydriding-dehydriding cycling, the 76.5 wt%Mg-23.5 wt%Ni and 71.5 wt%Mg-23.5 wt%Ni-5 wt%$Fe_2O_3$ samples contained $Mg_2Ni$ phase. In addition to the effects of the creation of defects and the decrease in particle size, the addition of Ni increases the hydriding and dehydriding rates by the formation of $Mg_2Ni$. Expansion and contraction of the hydride-forming materials (Mg and $Mg_2Ni$) with the hydriding and dehydriding reactions are also considered to increase the hydriding and dehydriding rates of the mixture by forming defects and cracks leading to the fragmentation of particles. The reactive mechanical grinding of Mg-Ni alloy with $Fe_2O_3$ is considered to decrease the particle size.

Keywords

References

  1. J. S. Han and K. D. Park, Kor. J. Met. Mater. 48, 1123 (2010).
  2. A. Vose, Metal Hydrides, U.S. Patent 2, 944, 587 (1961).
  3. J. J. Reilly and R. H. Wiswall, Inorg. Chem. 6, 2220 (1967).
  4. J. J. Reilly and R. H. Wiswall Jr, Inorg. Chem. 7, 2254 (1968).
  5. D. L. Douglass, Metall. Trans. A6, 2179 (1975).
  6. M. H. Mintz, Z. Gavra, and Z. Hadari, J. Inorg. Nucl. Chem. 40, 765 (1978).
  7. M. Pezat, A. Hbika, B. Darriet, and P. Hagenmuller, Mater. Res. Bull. 14, 377 (1979).
  8. M. Pezat, B. Darriet, and P. Hagenmuller, J. Less-Common Met. 74, 427 (1980).
  9. Q. Wang, J. Wu, M. Au, and L. Zhang, in: T. N. Veziroðlu, J. B. Taylor (Eds.), Proceedings of the Fifth World Hydrogen Energy Conference (Hydrogen, Energy Progress V), p. 1279-1290, Toronto, Canada, Pergamon, New York, (1984).
  10. E. Akiba, K. Nomura, S. Ono, and S. Suda, Int. J. Hydrogen Energy 7, 787 (1982).
  11. J. M. Boulet and N. Gerard, J. Less-Common Met. 89, 151 (1983).
  12. S. H. Hong, S. N. Kwon, and M. Y. Song, Kor. J. Met. Mater. 49, 298 (2011).
  13. K. I. Kim and T. W. Hong, Kor. J. Met. Mater. 49, 264 (2011).
  14. B. Tanguy, J. L. Soubeyroux, M. Pezat, J. Portier, and P. Hagenmuller, Mater. Res. Bull. 11, 1441 (1976).
  15. F. G. Eisenberg, D. A. Zagnoli, and J. J. Sheridan III, J. Less-Common Met. 74, 323 (1980).
  16. M. Y. Song, J. Mater. Sci. 30, 1343 (1995).
  17. M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, Int. J. Hydrogen Energy 10, 169 (1985).
  18. M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, J. Less-Common Met. 131, 71 (1987).
  19. M. Y. Song, Int. J. Hydrogen Energy 20, 221 (1995).
  20. J.-L. Bobet, E. Akiba, Y. Nakamura, and B. Darriet, Int. J. Hydrogen Energy 25, 987 (2000).
  21. J. Huot, M.-L. Tremblay, and R. Schulz, J. Alloys and Compounds 356, 603 (2003).
  22. H. Imamura, M. Kusuhara, S. Minami, M. Matsumoto, K. Masanari, Y. Sakata, K. Itoh, and T Fukunaga, Acta Materialia 51, 6407 (2003).
  23. W. Oelerich, T. Klassen, R Bormann, J. Alloys and Compounds 322, L5 (2001).
  24. Z. Dehouche, T. Klassen, W. Oelerich, J. Goyette, T. K. Bose, and R. Schulz, J. Alloys and Compounds 347, 319 (2002).
  25. G. Barkhordarian, T. Klassen, and R. Bormann, Scr. Mater. 49, 213 (2003).
  26. A. R. Yavari, A. LeMoulec, F. R. de Castro, S. Deledda, O. Friedrichs, W. J. Botta, G. Vaughan, T. Klassen, A. Fernandez, and A. Kvick, Scr. Mater. 52, 719 (2005).
  27. C. D. Yim, B. S. You, Y. S. Na, and J. S. Bae, Catalysis Today 120, 276 (2007).
  28. M. Y. Song, I. H. Kwon, S. N. Kwon, C. G. Park, S. H. Hong, D. R. Mumm, and J. S. Bae, J. Alloys and Compounds 415, 266 (2006).
  29. M. Y. Song, D. S. Ahn, I. H. Kwon, and H. J. Ahn, Met. Mater. Int. 5, 485 (1999).
  30. M.Y. Song, S. H. Baek, H. R. Park, and S. H. Hong, J. Ind. Eng. Chem. 16, 666 (2010).