DOI QR코드

DOI QR Code

Fabrication of Long-range Ordered Porous Alumina Membranes with Various Voltages Applied for Hard Anodization

양극산화 인가전압에 따른 장범위 규칙 다공성 알루미나 멤브레인의 제조

  • Jang, HyunChul (Department of Nano Science & Technology, University of Seoul) ;
  • Choi, JungMi (Department of Nano Science & Technology, University of Seoul) ;
  • An, KiTae (Department of Nano Science & Technology, University of Seoul) ;
  • Lee, Naesung (Faculty of Nanotechnology and Advanced Materials Engineering, EEMRC, Sejong University) ;
  • Park, Yunsun (Department of Industrial and management Engineering, Myongi University) ;
  • Sok, JungHyun (Department of Nano Science & Technology, University of Seoul)
  • 장현철 (서울시립대학교 나노과학기술학과) ;
  • 최정미 (서울시립대학교 나노과학기술학과) ;
  • 안기태 (서울시립대학교 나노과학기술학과) ;
  • 이내성 (세종대학교 나노신소재공학부) ;
  • 박윤선 (명지대학교 산업경영공학부) ;
  • 석중현 (서울시립대학교 나노과학기술학과)
  • Received : 2011.08.22
  • Published : 2012.01.25

Abstract

Studying the long-range ordering of nanopores on the anodic aluminum oxide (AAO) membranes under a hard anodization (HA) approach is crucial in producing well-aligned nanopores on the AAO membranes. Electro-polishing in a mixture of ethanol and perchloric acid for 5 min removed marks formed by rolling and produced flat surfaces on aluminum substrates. The AAO was formed by the first HA process, providing seeds for the subsequent production of uniform AAO nanopores. The second HA process carried out on the seeds produced well-aligned, uniform AAO nanopores. The AAO nanopores, varying in size and shape, were observed with voltages applied for HA. This study provides a route for controlling the size and shape of AAO nanopores by changing the applied voltages.

Keywords

Acknowledgement

Supported by : 중소기업청

References

  1. C.E. Reid and E. J. Breton, J. Appl. Polm. Sci. 1, 133 (1959).
  2. Kohli, P., Wirtz, M., and Martin, C. R. Electroanalysis 16, 9 (2004).
  3. Che, G. L., Lakshmi, B. B., Fisher, E. R., and Martin, C. R. Nature 393, 346 (1998).
  4. Yamaguchi, A., Uejo, F., Yoda, T., Uchida, T., Tanamura, Y., Yamashita, T., and Teramae, N. Nat. Mater. 3, 337 (2004).
  5. Martin, C. R. Science 266, 1961 (1994).
  6. Martin, C. R. Chem. Mater. 8, 1739 (1996).
  7. Masuda H. and Satoh M., Jpn. J. Appl. Phys. 35, L126, (1996).
  8. Masuda H., Yada K., and Osaka A., Jpn. J. Appl. Phys. 37, L1340 (1998).
  9. Masuda H., yamada H., Satoh M., Asoh H., Nakao M., and Tamamura T., Appl. Phys. Lett. 71, 2770 (1997).
  10. Wada, K., Shimohira, T., Yamada, and M. Baba, N. J. Mater. Sci. 21, 3810 (1986).
  11. Csokan, P. and Sc., C. C. Electroplat. Met. Finish. 15, 75 (1962).
  12. Woo L., Ran J., Ulrich G., and Kornelius N. Nature materials 5, 741 (2006).
  13. Kathrin S., Woo L., Reinald H., Martin S., Kornelius N., and Ulrich G., Nano latters 4, 302 (2008).
  14. Jinsub Choi, Jaekwang Lee, Jaehoon Lim, and Sungjoong Kim, J. Korean Ind. Chem. 19, 249 (2008).