DOI QR코드

DOI QR Code

졸겔법으로 제작된 Al-doped ZnO 박막의 Aluminum Chloride 농도에 따른 구조적 및 광학적 특성

Effects of Aluminum Chloride Concentrations on Structural and Optical Properties of Al-doped ZnO Thin Films Prepared by the Sol-Gel Method

  • 조관식 (인제대학교 나노메뉴팩쳐링연구소 나노시스템공학과) ;
  • 김민수 (인제대학교 나노메뉴팩쳐링연구소 나노시스템공학과) ;
  • 임광국 (인제대학교 나노메뉴팩쳐링연구소 나노시스템공학과) ;
  • 이재용 (인제대학교 나노공학부) ;
  • 임재영 (인제대학교 나노메뉴팩쳐링연구소 나노시스템공학과)
  • Cho, Guan Sik (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Kim, Min Su (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Yim, Kwang Gug (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Lee, Jaeyong (Department of Nano Engineering, Inje University) ;
  • Leem, Jae-Young (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
  • 투고 : 2012.02.20
  • 발행 : 2012.11.25

초록

Al-doped ZnO (AZO) thin films were grown on quartz substrates by the sol-gel method. The effects of the Al mole fraction on the structural and optical properties of the AZO thin films were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-VIS spectroscopy. The particle size of the AZO thin films decreased with an increase in Al concentrations. The optical parameters, the optical band gap, absorption coefficient, refractive index, dispersion parameter, and optical conductivity, were studied in order to investigate the effects of Al concentration on the optical properties of AZO thin films. The dispersion energy, single-oscillator energy, average oscillator wavelength, average oscillator strength, and refractive index at an infinite wavelength of the AZO thin films were affected by the Al incorporation. The optical conductivity of the AZO thin films also increased with increasing photon energy.

키워드

과제정보

연구 과제 주관 기관 : 인제대학교

참고문헌

  1. S. Fujihara, C. Sasaki, and T. Kimura, Appl. Surf. Sci. 180, 341 (2001).
  2. M. Ohyama, J. Am. Ceram. 81, 1622 (1998).
  3. D. Bao, H. Gu, and A. Kuang, Thin Solid Films 312, 37 (1998).
  4. J. F. Chang, W. C. Lin, and M. H. Hon, Appl. Surf. Sci. 183, 18 (2001).
  5. E. Fortunato, P. Nunes, A. Marques, D. Costa, H. Aguas, I. Ferreira, M. E. V. Costa, M. H. Godinho, P. L. Almeida, J. P. Borges, and R. Martins, Adv. Eng. Mater. 4, 610 (2002).
  6. C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, and H. Shen, J. Appl. Phys. 85, 2595 (1999).
  7. P. Samarasekara, A. G. K. Nisantha, and A. S. Disanayake, Chinese J. Phys. 40, 196 (2002).
  8. H. W. Kim, J. C. Yang, H. G. Na, D. S. Kwak, and C. Lee, Met. Mater. Int. 18, 705 (2012).
  9. M. J. Cheon, S. Kim. G. Nam, K. G. Yim, M. S. Kim, and J. Y. Leem, Korean J. Met. Mater. 49, 583 (2011).
  10. R. D. Vispute, V. Talyansky, S. Choopun, R. P. Sharma, T. Venkatesan, M. He, X. Tang, J. B. Halpern, M. G. Spencer, Y. X. Li, L. G. Salamanca-Riba, A. A. Iliadis, and K. A. Jones, Appl. Phys. Lett. 73, 348 (1998).
  11. K. Sun, W. Wei, Y. Ding, Y. Jing, Z. L. Wang, and D. Wang, Chem. Commun. 47, 7776 (2011).
  12. J. Aronovich, A. Ortiz, and R. H. Bube, J. Vac. Sci. Technol. 16, 994 (1979).
  13. M. S. Kim, T. H. Kim, D. Y. Kim, G. S. Kim, H. Y. Choi, M. Y. Cho, S. M. Jeon, J. S. Kim, J. S. Kim, D. Y. Lee, J. S. Son, J. I. Lee, J. H. Kim, E. Kim, D. W. Hwang, and J. Y. Leem, J. Cryst. Growth 311, 3568 (2009).
  14. H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, Thin Solid Films 445, 263 (2003).
  15. K. I. Lee, H. I. Kang, T. Y. Lee, J. H. Lee, and J. T. Song, J. Korean Phys. Soc. 53, 2407 (2008).
  16. D. J. Lee, H. M. Kim, J. Y. Kwon, H. Choi, S. H. Kim, and K. B. Kim, Adv. Funct. Mater. 21, 448 (2011).
  17. J. H. Lee and B. O. Park, Thin Solid Films 426, 94 (2003).
  18. H. Abdullah, M. N. Norazia, S. Shaari, and J. S. Mandeep, Thin Solid Films 518, e174 (2010).
  19. J. Nishino, S. Ohshio, and K. Kamata, J. Am. Ceram. Soc. 75, 3469 (1992).
  20. Z. Q. Xu, H. Deng, Y. Li, Q. H. Guo, and Y. R. Li, Mat. Res. Bull. 41, 354 (2006).
  21. M. K. Puchert, P. Y. Timbrell, and R. N. Lamb, J. Vac. Sci. Technol. A 14, 2220 (1996).
  22. C. S. Hong, H. H. Park J. Moon, and H. H. Park, Thin Solid Films 515, 957 (2006).
  23. J. Mass, P. Bhattacharya, and R. S. Kariyar, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 103, 9 (2003).
  24. A. Seval, Y. Caglar, S. Ilican, and M. Caglar, J. Hydrog. Energy. 34, 5191 (2009).
  25. E. Burstein, Phys. Rev. 93, 632 (1953).
  26. T. S. Moss, Proc. Phys. Soc. B 67, 775 (1954).
  27. F. Urbach, Phys. Rev. 92, 1324 (1953).
  28. N. A. Subrahamanyam, A Textbook of Optics, ninth ed., Brj laboratory, Delhi (1997).
  29. F. Yakuphanoglu and M. Sekerci, J. Mol. Struct. 751, 200 (2005).
  30. J. N. Hodgson, Optical Absorption and Dispersion in Solids, Champson and Hall Ltd., London (1970).