콩 씨스트 선충 저항성 연구현황과 전망

Current Researches on Resistance to Soybean Cyst Nematode and Prospects

  • 김동근 (경상북도 농업기술원 신물질연구소) ;
  • 김용철 (부산대학교 식물생명과학과) ;
  • 김선태 (부산대학교 식물생명과학과) ;
  • 고병구 (농촌진흥청 기능성작물부) ;
  • 한원형 (농촌진흥청 기능성작물부) ;
  • 박영훈 (부산대학교 원예생명과학과) ;
  • 최인수 (부산대학교 식물생명과학과)
  • Kim, Dong-Gun (Institute of Natural Products Research) ;
  • Kim, Yong-Chul (Dept. of Plant Bioscience, Pusan National Univ.) ;
  • Kim, Sun-Tae (Dept. of Plant Bioscience, Pusan National Univ.) ;
  • Ko, Byong-Gu (Dept. of Functional Crop, National Institute of Crop Science, RDA) ;
  • Han, Won-Hyung (Dept. of Functional Crop, National Institute of Crop Science, RDA) ;
  • Park, Young-Hoon (Dept. of Horticultural Bioscience, Pusan National Univ.) ;
  • Choi, In-Soo (Dept. of Plant Bioscience, Pusan National Univ.)
  • 투고 : 2012.07.06
  • 심사 : 2012.08.28
  • 발행 : 2012.08.30

초록

콩 씨스트 선충은 콩 수량에 가장 심각한 피해를 입히는 선충이며, 콩 씨스트 선충으로 입는 피해가 연간 전 세계적으로 9백만 메가그램이나 되는 것으로 추정되고 있다. 콩 씨스트 선충은 식물 영양분을 먹어 뿌리의 성장을 지연시키고 근류균의 고정을 억제함으로서 수량의 감소를 가져 오게 된다. 콩 씨스트 선충을 방제하는 근본적인 방법은 저항성 품종을 재배하거나 윤작을 하는 것이다. 유전적으로 콩 씨스트 선충의 다양한 레이스들과 상업적 품종들의 제한된 저항성 품종들이 오랜 시간에 걸쳐 레이스 전환을 가져왔고, 이러한 이유로 콩 씨스트 선충의 방제가 매우 어려운 실정이다. 이 논문은 콩의 중요성, 콩 씨스트 선충, 콩 씨스트 선충 저항성에 대한 연구현황, 그리고 전망에 관해 고찰하였다.

Soybean cyst nematode(SCN) (Heterodera glycines Ichinohe) causes the greatest yield loss to soybean compared to any other pest worldwide. Yield loss due to SCN is estimated 7.6 million megagrams in the USA and nearly 9 million worldwide. SCN causes yield reductions by feeding on plant nutrients, retarding root growth, and inhibiting Bradyrhizpbium japonicum(Kirchner) Buchanan nodulation. The primary methods for controlling SCN include planting resistant cultivars and rotation with nonhost crops. Genetically diverse field populations of SCN combined with the limited germplasm base of commercial soybean for resistance could potentially leads to population shifts over time, and this makes controlling H. glycines more difficult. This paper reviewed the importance of soybean, soybean cyst nematode, researches on resistance to SCN, and prospects. Tremendous effort must still be endeavored for elucidating resistance mechanisms and managing H. glycines in the soybean field.

키워드

과제정보

연구 과제 주관 기관 : 부산대학교

참고문헌

  1. Abad, P., J. Gouzy, J. M. Aury, P. Castagnone-Sereno, E. G. Danchin, E. Deleury, L. Perfus-Barbeoch, V. Anthouard, F. Artiguenave, and V. C. Blok. 2008. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat. Biotechnol. 26: 909-915. https://doi.org/10.1038/nbt.1482
  2. Alkharouf, N. W., D. C. Jamison, and B. F. Matthews. 2005. Online analytical processing(OLAP): a fast and effective data mining tool for gene expression databases. J. Biomed. Biotechnol. 2: 181-188.
  3. Alkharouf, N. W., V. P. Klink, I. B. Chouikha, H. S. Beard, M. H. MacDonald, S. Meyer, H. T. Knap, R. Khan, and B. F. Matthews. 2006. Timecourse microarray analyses reveals global changes in gene expression of susceptible Glycine max (soybean) roots during infection by Heterodera glycines(soybean cyst nematode). Planta. 224: 838-852. https://doi.org/10.1007/s00425-006-0270-8
  4. Choi, I. S. and Y. C. Kim. 2003. Identification of quantitative trait loci for resistance to soybean cyst nematode race 14. Korean J. Life Sci. 13: 375-382.
  5. Choi, I. S., Y. C. Kim, S. M. Kim, C. Y. Lee, H. C. Park, and H. T. Skorupska. 1997a. Identification of quantitative trait loci for resistance to soybean cyst nematode race 5. Korean J. Crop Sci. 42: 712-721.
  6. Choi, I. S. and H. T. Skorupska. 1997b. Identification of quantitative trait loci for resistance to soybean cyst nematode race 3 in soybean. Korean J. Breeding 29: 166-177.
  7. Choi, Y. E. and D. R. Choi. 1983. Survey on soybean parasitic nematodes. Korean J. Plant Prot. 22: 51-261.
  8. Concibido, V. C., B. W. Diers, and P. R. Arelli. 2004. A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci. 44: 1121-1131. https://doi.org/10.2135/cropsci2004.1121
  9. Golden, A. M., J. M. Epps, R. D. Riggs, L. A. Duclos, J. A. Fox, and R. L Bernard. 1970. Terminology and identity of infraspecific forms of the soybean cyst nematode(Heterodera glycines). Plant Dis. Rep. 54: 544-546.
  10. Han, S. C. and H. J. Cho. 1980. Influence of soybean cyst nematode on growth and yield of soybean. Korean J. Plant Prot. 19: 31-34.
  11. Huang, G., R. Allen, E. L. Davis, T. J. Baum, and R. S. Hussey. 2006. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc. Natl. Acad. Sci. USA 103: 14302-14306. https://doi.org/10.1073/pnas.0604698103
  12. Ithal, N., J. Recknor, D. Nettleston, L. Hearne, T. Maier, T. J. Baum, and M. G. Mitchum. 2007. Parallel genome-wide expression profiling of host and pathogen during soybean cyst nematode infection of soybean. Mol. Plant. Microbe. Interact. 20: 293-305. https://doi.org/10.1094/MPMI-20-3-0293
  13. Jones, M. G. K. 1981. The development and function of plant cells modified by endoparasitic nematodes. In BM Zuckerman, RA Rohde, eds, Plant Parasitic Nematodes, Vol III. Academic Press, New York: 255-279.
  14. Jung, C. and U. Wyss. 1999. New approaches to control plant parasitic nematodes. Appl. Microbiol. Biotechnol. 51: 439-446. https://doi.org/10.1007/s002530051414
  15. Khan, R., N. Alkharouf, H. S. Beard, M. MacDonald, I. Chouikha, S. Meyer, J. Grefenstette, H. Knap, and B. F. Matthews. 2004. Resistance mechanisms in soybean: gene expression profile at an early stage of soybean cyst nematode invasion. J. Nematol. 36: 241- 248.
  16. Kim, D. G. and Y. E. Choi. 1983. Studies on the resistance and races of soybean-cyst nematode, Heterodera glycines, in Korea. Korean J. Plant Prot. 22: 208-212.
  17. Klink, V. P., P. Hosseini, P. Matsye, N. Alkharouf, and B. F. Matthews. 2009. A gene expression analysis of syncytia laser microdissected from the roots of the Glycine max(soybean) genotype PI 548402(Peking) undergoing a resistant reaction after infection by Heterodera glycines(soybean cyst nematode). Plant Mol. Biol. 71: 525-567. https://doi.org/10.1007/s11103-009-9539-1
  18. Klink, V. P., M. MacDonald, N. Alkharouf, and B. F. Matthews. 2005. Laser capture microdissection(LCM) and expression analyses of Glycine max(soybean) syncytium containing root regions formed by the plant pathogen Heterodera glycines(soybean cyst nematode). Plant Mol. Biol. 59: 969-983.
  19. Klink, V. P., C. C. Overall, N. Alkharouf, M. H. MacDonald, and B. F. Matthews. 2007. Laser capture microdissection(LCM) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean roots infected by soybean cyst nematode(Heterodera glycines). Planta. 226: 1389-1409. https://doi.org/10.1007/s00425-007-0578-z
  20. Niblack, T. L., P. R. Arelli, G. R. Noel, C. H. Opperman, J. H. Orf, D. P. Schmitt, J. G. Shannon, and G. L. Tylka. 2002. A revised classification scheme for genetically diverse populations of Heterodera glycines. J. Nematol. 34: 279-288.
  21. Park E. U. 1991. Studies on effective control for cyst nematodes and phomopsis seed decay of soybeans. Korea Soybean Digest 8: 17-27.
  22. Park, J. S., S. C. Han, and Y. B. Lee. 1969. Studies on the varietal resistance of the soybean to the cyst nematode, Heterodera glycines Ichinohe and its damage. Korean J. Plant Prot. 7: 21-25.
  23. Riggs, R. D. and D. P. Schmitt. 1988. Complete characterization of the race scheme for Heterodera glycines. J. Nematol. 20: 392-397.
  24. Song, W. C., S. W. Baertschi, W. E. Boeglin, T. M. Harris, and A. R. Brash. 1993. Formation of epoxyalcohols by a purified allene oxide synthase: implications for the mechanism of allene oxide synthesis. J. Biol. Chem. 268: 6293-6298.
  25. Steeves, R. M., T. C. Todd, J. S. Essig, and H. N. Trick. 2006. Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction. Funct. Plant Biol. 33: 991-999. https://doi.org/10.1071/FP06130
  26. Urwin, P. E., C. J. Lilley, and H. J. Atkinson. 2002. Ingestion of double stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Mol. Plant Microbe. Interact. 15: 747-752. https://doi.org/10.1094/MPMI.2002.15.8.747