Ferulic Acid Regulates Heme Oxygenase-1 Expression in Focal cerebral Ischemia

국소적 대뇌허혈시 ferulic acid의 heme oxygenase-1 조절작용

  • Koh, Phil-Ok (Department of Veterinary Anatomy, Gyeongsang National Univ.(Insti. of Agric. & Life Sci.))
  • 고필옥 (경상대학교 수의과대학 수의해부학교실, 경상대학교 농업생명과학연구원)
  • Received : 2012.08.08
  • Accepted : 2012.12.26
  • Published : 2012.12.31

Abstract

This study investigated whether ferulic acid modulates the heme oxygenase (HO)-1 and HO-2 expression in middle cerebral artery occlusion (MCAO)-induced brain injury. Rats (Sprague-Dawley, male) were treated with vehicle or ferulic acid (100 mg/kg, i.v.) before MCAO, and cerebral cortex tissues were collected 24 h after MCAO. This study clearly confirmed the protective effects of ferulic acid during MCAO-induced damage using hematoxylin and eosin staining. MCAO induces nuclear chromatin condensations and necrotic changes with scalloped shrunken form. However, ferulic acid prevented MCAO-induced histopathological changes. HO-1 and HO-2 expression levels were measured using reverse-transcription PCR and Western blot analyses. HO-1 levels were decreased in vehicle-treated animals after MCAO, whereas this decrease in HO-1 levels was attenuated by ferulic acid treatment. However, the level of HO-2 was consistently maintained in the cerebral cortex of vehicle- and ferulic acid-treated animals after MCAO. These results demonstrated that ferulic acid regulates HO-1 expression in ischemic brain injury, while ferulic acid do not modulate HO-2 expression in MACO. In conclusion, these findings suggest that ferulic acid exerts a neuroprotective effect by preventing the MCAO-induced decrease of HO-1 expression.

본 연구는 중간대뇌동맥을 폐쇄한 대뇌허혈성 손상모델에서 ferulic acid에 의해 조절되는 HO-1과 HO-2의 발현에 관하여 조사하였다. 흰쥐(Sprague-Dawley, 수컷)에 ferulic acid (100 mg/kg) 또는 vehicle을 중간대뇌동맥폐쇄술(MCAO) 후 정맥으로 주사하였고 중간대뇌동맥폐쇄술(MCAO)을 실시한 24시간 후 대뇌피질의 조직을 적출하였다. Hematoxylin과 eosin 염색을 통하여 MCAO로 유도된 뇌 손상시 ferulic acid의 보호효과를 확인하였다. MCAO을 시행한 대뇌피질에서는 응축된 핵과 신경세포의 괴사 소견을 보였으나, ferulic acid 투여군에서는 이들 신경세포의 병변을 현저히 완화시켰다. HO-1과 HO-2의 RNA와 단백질 발현의 변화를 reverse-transcription PCR과 Western blot으로 분석하였다. HO-1 발현은 MCAO 후 vehicle 투여군에서 현저히 감소하였으나, MCAO 후 ferulic acid를 투여한 실험군에서는 이들 감소의 완화를 보였으며, MCAO를 시행하지 않은 실험군의 수준으로 유지되었다. 그러나, HO-2의 발현은 MCAO 후 vehicle 투여군과 ferulic acid 투여군에서 유의적인 차이는 관찰되지 않았고 MCAO를 시행하지 않은 실험군의 수준으로 유지되었다. 따라서, 본 연구의 결과는 허혈성 뇌 손상시 ferulic acid는 HO-1 발현을 조절하였으나, HO-2의 발현에는 영향을 미치지 못함을 확인하였다. 결론적으로, 허혈성 뇌손상시 ferulic acid는 HO-1의 발현을 조절하여 신경세포를 보호하는 역할을 수행한다는 사실을 확인하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Applegate, L. A., P. Luscher, and R. M. Tyrrell. 1991. Induction of hemeoxygenase: a general response to oxidant stress in cultured mammalian cells. Cancer Res. 51: 974-978.
  2. Baranano, D. E., M. Rao, C. D. Ferris, and S. H. Snyder. 2002. Biliverdin reductase: a major physiologic cytoprotectant. Proc. Natl. Acad. Sci. U.S.A. 99: 16093-16098. https://doi.org/10.1073/pnas.252626999
  3. Chao, H. M., D. E. Lin, Y. Chang, W. M. Hsu, S. M. Lee, F. L. Lee, C. W. Chi, W. H. Pan, T. Y. Liu, W. Y. Lui, L.T. Ho, C. D. Kuo, C. C. Chan, and F. P. Chao. 2008. Ferulic acid, but not tetramethylpyrazine, significantly attenuates retinal ischemia/reperfusion-induced alterations by acting as a hydroxyl radical scavenger. J. Ocul. Pharmacol. Ther. 24: 461-472. https://doi.org/10.1089/jop.2008.0005
  4. Chen, K., K. Gunteh, and M. D. Maines. 2000. Neurons overexpressing heme oxygenase-1 resist oxidative stress-mediated cell death. J. Neurochem. 75: 304-313.
  5. Cheng, C. Y., T. Y. Ho, E. J. Lee, S. Y. Su, N. Y. Tang, and C. L. Hsieh. 2008a. Ferulic Acid reduces cerebral infarct through its antioxidative and anti-inflammatory effects following transient focal cerebral ischemia in rats. Am. J. Chin. Med. 36: 1105-1119. https://doi.org/10.1142/S0192415X08006570
  6. Cheng, C. Y., S. Y. SY, N. Y. Tang, T. Y. Ho, S. Y. Chiang, and C. L. Hsieh. 2008b. Ferulicacid provides neuroprotection against oxidative stress-related apoptosis after cerebral ischemia/reperfusion injury by inhibiting ICAM-1 mRNA expression in rats. Brain Res. 13: 136-150.
  7. Chomczynski, P. and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159.
  8. Esterbauer, H., E. Koller, R. G. Slee, and J. F. Koster. 1986. Possible involvement of the lipid-peroxidation product 4-hydroxynonenal in the formation of fluorescent chromolipids. Biochem. J. 239: 405-409.
  9. Ferrer, I., B. Friguls, E. Dalfo, C. Justicia, and M. M. Planas. 2003. Caspase-dependent and caspase-independent signalling of apoptosis in the penumbra following middle cerebral artery occlusion in the adult rat. Neuropathol. Appl. Neurobiol. 29: 472-481. https://doi.org/10.1046/j.1365-2990.2003.00485.x
  10. Ferris, C. D., S. R. Jaffrey, A. Sawa, M. Takahashi, S. D. Brady, R. K. Barrow, S. A. Tysoe, H. Wolosker, D. F. Baranano, S. Dore, K. D. Poss, and Snyder, S. H. 1999. Heme oxygenase-1 prevents cell death by regulating cellular iron. Nat. Cell. Biol. 1: 152-157. https://doi.org/10.1038/11072
  11. Fukuda, K., J. D. Richmon, M. Sato, F. R. Sharp, S. S. Panter, and L. J. Noble. 1996. Induction of heme oxygenase-1 (HO-1) in glia after traumatic brain injury. Brain Res. 736: 68-75. https://doi.org/10.1016/0006-8993(96)00680-4
  12. Geddes, J. W., L. C. Pettigrew, M. L. Holtz, S. D. Craddock, and M. D. Maines. 1996. Permanent focal and transient global cerebral ischemia increase glial and neuronal expression of heme oxygenase-1, but not heme oxygenase-2, protein in rat brain. Neurosci. Lett. 210: 205-208. https://doi.org/10.1016/0304-3940(96)12703-8
  13. Kanski, J., M. Aksenova, A. Stoyanova, and D.A. Butterfield. 2002. Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structure-activity studies. J. Nutr. Biochem. 13: 273-281. https://doi.org/10.1016/S0955-2863(01)00215-7
  14. Kim, H. S., J. Y. Cho, D. H. Kim, J. J. Yan, H. K. Lee, H. W. Suh, and D. K. Song. 2004. Inhibitory effects of long-term administration of ferulic acid on microglial activation induced by intracerebroventricular injection of beta-amyloid peptide (1-42) in mice. Biol. Pharm. Bull. 27: 120-121. https://doi.org/10.1248/bpb.27.120
  15. Koh, P. O. 2012. Ferulic acid prevents the cerebral ischemic injury-induced decrease of Akt and Bad phosphorylation. Neurosci. Lett. 507: 156-60. https://doi.org/10.1016/j.neulet.2011.12.012
  16. Longa, E. Z., P. R. Weinstein, S. Carlson, and R. Cummins. 1989. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20: 84-91. https://doi.org/10.1161/01.STR.20.1.84
  17. Maines, M. D., G. M. Trakshel, and R. K. Kutty. 1986. Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible. J. Biol. Chem. 261:411-419.
  18. Maines, M. D. 1997. The heme oxygenase system: a regulator of second messenger gases. Annu. Rev. Pharmacol. Toxicol. 37: 517-554. https://doi.org/10.1146/annurev.pharmtox.37.1.517
  19. Martin, R. L., H. G. Lloyd, and A. I. Cowan. 1994. The early events of oxygen and glucose deprivation: setting the scene for neuronal death? Trends Neurosci. 17: 251-257. https://doi.org/10.1016/0166-2236(94)90008-6
  20. Matsuoka, Y., Y. Kitamura, M. Okazaki, M. Sakata, Y. Matsuoka, and T. Taniguchi. 1998. Induction of heme oxygenase-1 and major histocompatibility complex antigens in transient forebrain ischemia. J. Cereb. Blood Flow. Metab. 18: 824-832.
  21. Panahian, N., M. Yushiura, and M. D. Maines. 1999. Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. J. Neurochem. 72: 1187-1203.
  22. Salinas, M., R. R. Diaz, N. G. Abraham, C. M. Galarreta, and A. Cuadrado. 2003. Nerve growth factor protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a phosphatidylinositol 3-kinase-dependent manner. J. Biol. Chem. 278: 13898-13904. https://doi.org/10.1074/jbc.M209164200
  23. Sanchez-Prieto, J. and P. Gonzalez. 1986. Occurrence of a large Ca2+ homeostasis in the gerbil hippocampus following brief transient ischemia. Brain Res. 364: 372-376. https://doi.org/10.1016/0006-8993(86)90850-4
  24. Shin, D. H., Y. C. Bae, J. S. Kim, J. Han, J. H. Lee, I. Y. Choi, K. H. Son, S. S. Kang, W. K. Kim, and B. H. Han. 2006. Polyphenol amentoflavone affords neuroprotection against neonatal hypoxic-ischemic brain damage via multiple mechanisms. J. Neurochem. 96: 561-572. https://doi.org/10.1111/j.1471-4159.2005.03582.x
  25. Siesjo, B.K. and F. Bengtsson. 1989. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J. Cereb. Blood Flow. Metab. 9: 127-140. https://doi.org/10.1038/jcbfm.1989.20
  26. Srinivasan, M., A. R. Sudheer, K. R. Pillai, P. R. Kumar, P. R. Sudhakaran, and V. P. Menon. 2006. Influence of ferulic acid on gamma-radiation induced DNA damage, lipid peroxidation and antioxidant status in primary culture ofisolated rat hepatocytes. Toxicology 7: 249-58.
  27. Srinivasan, M., A. R. Sudheer, and V. P. Menon. 2007. Ferulic Acid: therapeutic potential through its antioxidant property. J. Clin. Biochem. Nutr. 40: 92-100. https://doi.org/10.3164/jcbn.40.92
  28. Stocker, R., Y. Yamamoto, A. F. McDonagh, A. N. Glazer, and B. N. Ames. 1987. Bilirubin is an antioxidant of possible physiological importance. Science 235: 1043-1046. https://doi.org/10.1126/science.3029864
  29. Tenhunen, R., H. S. Marver, and R. Schmid. 1970. The enzymatic catabolism of hemoglobin: stimulation of microsomal heme oxygenase by hemin. J. Lab. Clin. Med. 75: 410-421.
  30. Yet, S. F., R. Tian, M.D. Lavne, Z. Y. Wang, K. Maemura, M. Solovyeva, B. Ith, L. G. Melo, L. Zhang, J. S. Ingwall, V. J. Dzau, M. E. Lee, and M. A. Perrella. 2001. Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice. Circ. Res. 89: 168-173. https://doi.org/10.1161/hh1401.093314