Abstract
In this paper, we focus on a robotic sealing process in which three robots are used. Each robot can be considered as a 7 axis redundant robot of which the first joint is prismatic and the last 6 joints are revolute. In the factory floor, robot path planning is not a simple problem and is not automated. They need experienced operators who can operate robots by teaching and playing back fashion. However, the robotic sealing process is well organized so the relative positions and orientations of the objects in the floor and robot paths are all pre-determined. Therefore by adopting robotic theory, we can optimally plan robot pathes without using teaching. In this paper, we analyze the sealing robot by using redundant manipulator theory and propose three different methods for path planning. For sealing paths outside of a car body, we propose two methods. The first one is resolving redundancy by using pseudo-inverse of Jacobian and the second one is by using weighted pseudo-inverse of Jacobian. The former is optimal in the sense of energy and the latter is optimal in the sense of manipulability. For sealing paths inside of a car body, we must consider collision avoidance so we propose a performance index for that purpose and a method for optimizing that performance index. We show by simulation that the proposed method can avoid collision with faithfully following the given end effector path.