DOI QR코드

DOI QR Code

Finite Element Analysis of Superplastic Forming Considering Grain Growth-II. Superplastic Behavior of AZ31 Alloy

결정립 성장을 고려한 초소성 성형공정의 유한요소해석-II. AZ31 합금의초소성 거동

  • 김용관 (충남대학교 기계설계공학과 대학원) ;
  • 김상현 (한국기계연구원 부설 재료연구소) ;
  • 권용남 (한국기계연구원 부설 재료연구소) ;
  • 김용환 (충남대학교 기계설계공학과)
  • Received : 2012.07.05
  • Accepted : 2012.09.17
  • Published : 2012.11.01

Abstract

The aim of this study was to predict the results of superplastic forming on magnesium alloy, by considering the grain growth using numerical simulations. Superplastic behavior of AZ31 alloy was investigated through a set of uniaxial tensile tests that cover the forming temperatures ranges from 375 to $450^{\circ}C$. All the material parameters in the model, which consists of a constitutive equation and a grain growth equation, were determined. The model was used in the finite element analysis for uniaxial tensile tests and superplastic blow forming, through a user-subroutine available within ABAQUS. From this study, the effect of grain growth during forming was evaluated. The results show that it is essential to include the effect of grain growth in predicting the behavior during superplastic forming of this magnesium alloy.

Keywords

References

  1. W. S. Lee, 2006, A Trend on Manufacturing of Parts using Magnesium Alloy, Mach. Ind., Vol. 36, No. 7, pp. 104-109.
  2. E. M. Taleff, L. G. Hector, R. Verma, P. E. Krajewski, J. K. Chang, 2010, Material Models for Simulation of Superplastic Mg Alloy Sheet Forming, J. Mater. Eng. Perform., Vol. 19, No. 4, pp. 488-494. https://doi.org/10.1007/s11665-010-9612-6
  3. R. Verma, L. G. Hector, P. E. Krajewski, E. M. Taleff, 2009, The Finite Element Simulation of High-Temperature Magnesium AZ31 Sheet Forming, JOM, Vol. 61, No. 8, pp. 29-37. https://doi.org/10.1007/s11837-009-0118-3
  4. Y. T. Jun, 2011, A Trend on Domestic Production Technology and Information of R & D, Mach. Tool, Vol. 229, pp. 36-38.
  5. H. Takuda, T. Morishita, T. Kinoshita, N. Shirakawa, 2005, Modelling of Formula for Flow Stress of a Magnesium Alloy AZ31 Sheet at Elevated Temperatures, J. Mater. Process. Technol., Vol. 164-165, pp. 1258-1262. https://doi.org/10.1016/j.jmatprotec.2005.02.034
  6. D. M. Kang, 2004, Analysis of Formability of Magnesium Alloy using Finite Element Method, J. Korean Soc. Manuf. Technol., Vol. 3, No. 2, pp. 60-66.
  7. W. J. Song, S. C. Heo, T. W. Ku, B. S. Kang, J. Kim, 2011, Evaluation of Strain, Strain Rate and Temperature Dependent Flow Stress Model for Magnesium Alloy Sheets, Trans. Mater. Process., Vol. 20, No. 3, pp. 229-235. https://doi.org/10.5228/KSTP.2011.20.3.229
  8. Y. N. Kwon, Y. S. Lee, J. H. Lee, 2006, Proc. Kor. Soc. Tech. Plast. Spring, Conf., Kor. Soc. Tech. Plast., Seoul, Korea, pp. 59-62.
  9. S. D. Kim, Y. N. Kwon, Y. S. Lee, B. M. Kim, J. H. Lee, 2006, Proc. Kor. Soc. Tech. Plast. Spring, Conf., Kor. Soc. Tech. Plast., Seoul, Korea, pp. 67-69.
  10. G. Giuliano, S. Franchitti, 2008, The Determination of Material Parameters from Superplastic Free-Bulging Tests at Constant Pressure, Int. J. Mach. Tools Manuf., Vol. 48, No. 12-13, pp. 1519-1522. https://doi.org/10.1016/j.ijmachtools.2008.05.007
  11. D. E. Cipoletti, A. F. Bower, P. E. Krajewski, 2011, A Microstructure-Based Model of the Deformation Mechanisms and Flow Stress during Elevated-Temperature Straining of a Magnesium Alloy, Scr. Mater., Vol. 64, No. 10, pp. 931-934. https://doi.org/10.1016/j.scriptamat.2010.12.033
  12. F. K. Abu-Farha, M. K. Khraisheh, 2007, Mechanical Characteristics of Superplastic Deformation of AZ31 Magnesium Alloy, J. Mater. Eng. Perform., Vol. 16, No. 2, pp. 192-199. https://doi.org/10.1007/s11665-007-9031-5
  13. A. K. Ghosh, C. H. Hamilton, 1979, Mechanical Behavior and Hardening Characteristics of a Superplastic Ti-6Al-4V Alloy, Metall. Trans. A, Vol. 10, No. 6, pp. 699-706. https://doi.org/10.1007/BF02658391
  14. F. K. Abu-Farha, M. K. Khraisheh, 2007, Analysis of Superplastic Deformation of AZ31 Magnesium Alloy, Adv. Eng. Mater., Vol. 9, No. 9, pp. 777-783. https://doi.org/10.1002/adem.200700155
  15. C. H. Caceres, D. S. Wilkinson, 1984, Large Strain Behaviour of a Superplastic Copper Alloy-I. Deformation, Acta Metall., Vol. 32, No. 3, pp. 415-422. https://doi.org/10.1016/0001-6160(84)90115-9
  16. M. A. Nazzale, M. K. Khraisheh, 2004, Finite Element Modeling and Optimization of Superplastic Forming using Variable Strain Rate Approach, J. Mater. Eng. Perform., Vol. 13, No. 6, pp. 691-699. https://doi.org/10.1361/10599490421321
  17. F. S. Jarrar, F. K. Abu-Farha, L. G. Hector, M. K. Khraisheh, 2009, Simulation of High-Temperature AA5083 Bulge Forming with a Hardening /Softening Material Model, J. Mater. Eng. Perform., Vol. 18, No. 7, pp. 863-870. https://doi.org/10.1007/s11665-008-9322-5
  18. D. H. Bae, A. K. Ghosh, 2000, Grain Size and Temperature Dependence of Superplastic Deformation in an Al-Mg Alloy under Isostructural Condition, Acta Mater., Vol. 48, No. 6, pp. 1207-1224. https://doi.org/10.1016/S1359-6454(99)00445-0
  19. ABAQUS Analysis User's Manual., 2010, Dassault Systems Simulia Corp., Providence, RI, USA.
  20. ABAQUS Theory Manual., 2010, Dassault Systems Simulia Corp., Providence, RI, USA.