DOI QR코드

DOI QR Code

Localization of Unmanned Ground Vehicle based on Matching of Ortho-edge Images of 3D Range Data and DSM

3차원 거리정보와 DSM의 정사윤곽선 영상 정합을 이용한 무인이동로봇의 위치인식

  • 박순용 (경북대학교 컴퓨터학부) ;
  • 최성인 (경북대학교 전자전기컴퓨터학부)
  • Received : 2012.06.18
  • Accepted : 2012.09.18
  • Published : 2012.10.30

Abstract

This paper presents a new localization technique of an UGV(Unmanned Ground Vehicle) by matching ortho-edge images generated from a DSM (Digital Surface Map) which represents the 3D geometric information of an outdoor navigation environment and 3D range data which is obtained from a LIDAR (Light Detection and Ranging) sensor mounted at the UGV. Recent UGV localization techniques mostly try to combine positioning sensors such as GPS (Global Positioning System), IMU (Inertial Measurement Unit), and LIDAR. Especially, ICP (Iterative Closest Point)-based geometric registration techniques have been developed for UGV localization. However, the ICP-based geometric registration techniques are subject to fail to register 3D range data between LIDAR and DSM because the sensing directions of the two data are too different. In this paper, we introduce and match ortho-edge images between two different sensor data, 3D LIDAR and DSM, for the localization of the UGV. Details of new techniques to generating and matching ortho-edge images between LIDAR and DSM are presented which are followed by experimental results from four different navigation paths. The performance of the proposed technique is compared to a conventional ICP-based technique.

본 논문에서는 야지 환경에서 동작하는 무인이동로봇에서 획득한 3차원 LIDAR (Light Detection and Ranging) 센서 정보와 로봇이 이동하는 지형의 3차원 DSM (Digital Surface Map)에서 정사윤곽선(Ortho-edge) 특징영상을 생성하고 정합하여 로봇의 현재 위치를 추정하는 기술을 제안한다. 최근의 무인이동로봇의 위치 인식에 대한연구는 GPS (Global Positioning System), IMU (Inertial Measurement Unit), LIDAR 등의 위치인식 센서를 융합하는 경우가 많아지고 있다. 특히 LIDAR에서 획득한 거리정보를 ICP(Iterative Closest Point) 기반의 기하정합으로 로봇의 위치를 추정하는 기술이 개발되고 있다. 그러나 이동로봇에서 획득한 센서 정보는 DSM의 센싱 방향과 큰 차이차이가 있어 기존의 기하정합 기술을 사용하는데 어려움이 있다. 본 논문에서는 서로 다른 센싱 방향에서 획득한 3차원 LIDAR 거리정보와 DSM에서 정사윤곽선이라는 특징 영상을 생성하고 이들을 정합하여 로봇의 위치를 추정하는 새로운 기술을 제안한다. DSM으로부터 현재 시점의 정사윤곽선 영상을 생성하는 방법, 전방향 LIDAR 거리센서에서 정사윤곽선 영상을 생성하는 방법, 그리고 정사윤곽선 영상의 정합 기술을 설명하였다. 실험에서는 다양한 주행 경로에 대한 위치 추정의 오차를 분석하고 제안 기술의 성능의 우수성을 보였다.

Keywords

References

  1. D. Filliat and J.-A. Meyer, "Map-based navigation in mobile robots. I. A review of localization strategies," Journal of Cognitive Systems Research, Vol.4, No.4, pp.243-282, 2003. https://doi.org/10.1016/S1389-0417(03)00008-1
  2. R. Madhavan, T. Hong, and E. Messina, "Temporal range registration for unmanned ground and aerial vehicles," Journal of Intelligent and Robotic Systems, Vol.44, No.1, pp.47 -69, 2007
  3. J. Welle, D. Schulz, T. Bachran, and A. Cremers, "Optimization techniques for laser-based 3D particle filter SLAM," In proceeding of IEEE International Conference on Robotics and Automation, ICRA, pp.3525-3530, 2010.
  4. T. Ridene and F. Goulette, "Registration of fixed and mobile based terrestrial laser data sets with DSM," International Symposium on Computational Intelligence in Robotics and Automation (CIRA) , pp.375-380, 2009.
  5. F. Tungadi and L. Kleeman, "Multiple laser polar scan matching with application to SLAM," Australasian Conference on Robotics and Automation, 2007.
  6. T. Bailey and J. Nieto, "Scan-slam: Recursive mapping and localization with arbitrary-shaped landmarks," In Robotics: Science and Systems Conference (RSS) , 2008.
  7. P. J. Besl and N. D. McKay, "A method for registration of 3-D shapes," IEEE Trans. on Pattern Recognition and Machine Intelligence, Vol.14, No.2, pp.239-256, 1992. https://doi.org/10.1109/34.121791
  8. R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cambridge University Press., 2000.
  9. K. Arras and R. Siegwart, "Feature extraction and scene interpretation for map-based navigation and map building," Proceedings of SPIE, Mobile Robotics XII , Vol.3210, 1997.
  10. J. Levinson, M. Montemerlo, and S. Thrun, "Map based precision vehicle localization in urban environments," In Proc. of Robotics: Science and Systems, 2007.
  11. R. Triebel, P. Pfaff, and W. Burgard, "Multi-level surface maps for outdoor terrain mapping and loop closing," In Int'l Conf. on Intelligence Robotics and Systems(IROS) , pp.2276 -2282, 2006.
  12. 박순용, 최성인, "전방향 거리 센서의 균일 원호길이 샘플링을 이용한 무인 이동차량의 실시간 위치추정," 전자공학회논문지 -CI , Vol.48, No.6, pp.114-122, 2011.
  13. S.-Y. Park, S.-I. Choi, J. Moon, J. Kim, and Y. W. Park, "Localization of an unmanned ground vehicle based on hybrid 3D registration of 360 degree range data and DSM," International Journal Of Control Automation And Systems, Vol.9, No.5, pp.875-887, 2011. https://doi.org/10.1007/s12555-011-0508-5
  14. N. Vandapel, R. Donamukkala, and M. Hebert, "Unmanned ground vehicle navigation using aerial ladar data," The International Journal of Robotics Research, Vol.25, No.1, pp.31-51, 2006. https://doi.org/10.1177/0278364906061161
  15. M. Himmelsbach, A. Muller, T. Luttel, and H. Wunsche, "Lidar-based 3D object perception," In Proc. of the 1st Int'l Workshop on Cognition for Technical Systems, 2008.
  16. R. Kummerle, D. Hahnel, D. Dolgov, S. Thrun, and W. Burgard, "Autonomous driving in a multi-level parking structure," In Proc. of the IEEE Int'l Conf. on Robotics and Automation, 2009.
  17. M. Lehner, R. Müller, and P. Reinartz, "DSM And orthoimages from Quickbird And Ikonos data using rational polynomial functions, In Proceedings of High Resolution Earth Imaging for Geospatial Information, Vol.XXXVI, 2005.
  18. R. Gupta, and R. Hartley, "Linear pushbroom cameras," IEEE Transactions On Pattern Analysis And Machine Intelligence, Vol.19, No.9, pp.963-975, 1997. https://doi.org/10.1109/34.615446
  19. K. Jacobsen, "DEM generation from satellite data," EARSeL Symposium Ghent: Remote Sensing in Transition, pp.273- 276, 2003.
  20. R. Gonzalez, and R. Woods, Digital Image Processing, 3rd Ed., Addison-Wesley, 1992.