DOI QR코드

DOI QR Code

Preparation and Properties of Modified Silicon-containing Arylacetylene Resin with Bispropargyl Ether

  • Zhang, Jian (Department of Applied Chemistry, Xi'an University of Technology) ;
  • Huang, Jianxiang (School of Material Science and Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology) ;
  • Yu, Xiaojiao (Department of Applied Chemistry, Xi'an University of Technology) ;
  • Wang, Canfeng (School of Material Science and Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology) ;
  • Huang, Farong (School of Material Science and Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology) ;
  • Du, Lei (School of Material Science and Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology)
  • Received : 2012.06.21
  • Accepted : 2012.08.17
  • Published : 2012.11.20

Abstract

A novel silicon-containing arylacetylene resin (MSAR) modified by dipropargyl ether of bisphenol A (DPBPA) and dipropargyl ether of perfluorobisphenol A (DPPFBPA) was prepared separately. The curing behaviors of modified resins, DPBPA/MSAR and DPPFBPA/MSAR, were characterized with differential scanning calorimeter (DSC). The kinetic parameters of modified resins were obtained by the Kissinger and Ozawa methods. The results of dynamic mechanical analysis (DMA) revealed that the glass transition temperature ($T_g$) of the cured DPBPA/MSAR reached $486^{\circ}C$. According to the thermogravimetric analysis (TGA), the decomposition temperature ($T_{d5}$) of the cured resins and char yield ($Y_c$, $800^{\circ}C$) decreased as the dipropargyl ether loadings increased, especially in air. With the same weight loading, thermal stability of DPBPA/MSAR was better than that of DPPFBPA/MSAR. The carbon fiber (T300) reinforced composites exhibited excellent flexural properties at room temperature with a high property retention at $300^{\circ}C$.

Keywords

References

  1. Ichitani, M.; Nakamura, K. JP2000309635A, 2000.
  2. Itoh, M.; Inoue, K.; Hirayania, N.; Sugimoto, M.; Seguchi, T. J. Jpn. Soc. Compos. Mater. 2001, 27, 188. https://doi.org/10.6089/jscm.27.188
  3. Buvat, P. et al., FR2836922, 2003.
  4. Narisawa, M.; Tanaka, E.; Nishimura, R.; Okamura, K.; Itoh, M.; Kamiyama, T. Key Eng. Mater. 2003, 247, 137. https://doi.org/10.4028/www.scientific.net/KEM.247.137
  5. Inoue, K.; Iwata, K.; Ishikawa, J.; Fujikake, S.; Itoh, M. JP19970428, 2003.
  6. Itoh, M.; Inoue, K.; Iwata, K.; Mitsuzuka, M.; Kakigano, T. Macromolecules 1997, 30, 694. https://doi.org/10.1021/ma961081f
  7. Itoh, M.; Mitsuzuka, M.; Iwata, K.; Inoe, K. JP19941124, 1994.
  8. Itoh, M.; Mitsuzuka, M.; Iwata, K.; Inoe, K. JP19940712, 1994.
  9. Itoh, M.; Inoue, K.; Iwata, K.; Mitsuzuka, M.; Nara, R.; Hirayama, N. Nettowaku Porima 1996, 17, 161.
  10. Buvat, P.; Jousse, F.; Delnaud, L.; Levassort, C. In Synthesis and Properties of New Processable Type Polyarylacetylenes, 46th International SAMPE Symposium and Exhibition, A Materials and Processes Odyssey, Book 1, Soc. for the Advancement of Material and Process Engineering: Log Beach, U.S.A., 2001; Vol. 46, p 134.
  11. Buvat, P.; Levassort, C.; Jousse, F. EP 20000915, 2000.
  12. Wang, F.; Zhang, J.; Huang, J. X.; Yan, H.; Huang, F. R.; Du, L. Polym. Bull. 2006, 56, 19. https://doi.org/10.1007/s00289-005-0464-4
  13. Dirlikov, S. K.; Feng, Y. Polym. Mater. Sci. Eng. 1988, 59, 990.
  14. Dirlikov, S. K.; Feng, Y. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1991, 32, 363.
  15. Godschaix, J. P.; Inbasekaran, M. N.; Bartos, B. P. In Acetylenechromene Terminated Resins as High Temperature Thermosets, 22nd International SAMPE Technical Conference, SAMPE: Boston, U.S.A., 1990; p 163.
  16. Rong, Z.; Huang, F.; Shen, X.; Huang, F. Polym. Compos. 2008, 29, 483. https://doi.org/10.1002/pc.20382
  17. Wang, F.; Xu, J. F.; Zhang, J.; Huang, F. R.; Shen, Y. J.; Du, L. Polym. Int. 2006, 55, 1063. https://doi.org/10.1002/pi.2053
  18. Douglas, W. E.; Overend, A. S. Eur. Polym. J. 1991, 27, 1279. https://doi.org/10.1016/0014-3057(91)90066-W
  19. Reghunadhan Nair, C. P.; Bindu, R. L.; Krishnan, K.; Ninan, K. N. Eur. Polym. J. 1995, 35, 235.
  20. Kissinger, H. E. Anal. Chem. 1957, 29, 1702. https://doi.org/10.1021/ac60131a045
  21. Ozawa, T. J. Therm. Anal. 1970, 2, 301. https://doi.org/10.1007/BF01911411

Cited by

  1. Synthesis and properties of poly(dimethylsilylene-ethynylene-phenoxyphenoxyphenylene-ethynylene) vol.29, pp.5, 2017, https://doi.org/10.1177/0954008316655862
  2. Developing Highly Tough, Heat-Resistant Blend Thermosets Based on Silicon-Containing Arylacetylene: A Material Genome Approach vol.12, pp.24, 2020, https://doi.org/10.1021/acsami.0c06292