References
- Pryor, W. A. Free Radic. Biol. Med. 2000, 28, 141. https://doi.org/10.1016/S0891-5849(99)00224-5
- Matsui, N.; Nakashima, H.; Ushio, Y. Biol. Pharm. Bull. 2005, 28, 1762. https://doi.org/10.1248/bpb.28.1762
- Lin, Y. R.; Chen, H. H.; Ko, C. H.; Chan, M. H. Eur. J. Pharm. 2006, 537, 64. https://doi.org/10.1016/j.ejphar.2006.03.035
- Chen, C. M.; Liu, S. H.; Lin-Shiau, S. Y. Basic and Clinical Pharmacology and Toxicology 2007, 101, 108. https://doi.org/10.1111/j.1742-7843.2007.00082.x
- Matsui, N.; Takahashi, K.; Takeichi, M. Brain Research 2009, 1305, 108. https://doi.org/10.1016/j.brainres.2009.09.107
- Chen, H. H.; Lin, S. C.; Chan M. H.; Neurodegenerative Diseases 2011, 8, 364. https://doi.org/10.1159/000323872
- Fukuyama, Y.; Nakade, K.; Minoshima, Y.; Yokoyama, R.; Zhai, H.; Mitsumoto, Y. Bioorg. Med. Chem. Lett. 2002, 12, 1163. https://doi.org/10.1016/S0960-894X(02)00112-9
- Zhai, H.; Nakade, K.; Oda, M. Eur. J. Pharm. 2005, 516, 112. https://doi.org/10.1016/j.ejphar.2005.04.035
- Zhai, H.; Nakade, K.; Mitsumoto, Y.; Fukuyama, Y. Eur. J. Pharm. 2003, 474, 199. https://doi.org/10.1016/S0014-2999(03)02075-2
- Mori, A.; Ohashi, S.; Nakai, M.; Moriizumi, T.; Mitsumoto, Y. Neuroscience Research 2005, 51, 265. https://doi.org/10.1016/j.neures.2004.11.008
- Wright, J. S.; Johnson, E. R.; Dilabio, G. A. J. Am. Chem. Soc. 2001, 123, 1173. https://doi.org/10.1021/ja002455u
- Vafiadis, A. P.; Bakalbassis, E. G. Chem. Phys. 2005, 316, 195. https://doi.org/10.1016/j.chemphys.2005.05.015
- Musialik, M.; Litwinienko, G. Org. Lett. 2005, 7, 4951. https://doi.org/10.1021/ol051962j
- Zhang, H. Y.; Ji, H. F. J. Mol. Struct: Theochem. 2003, 663, 167. https://doi.org/10.1016/j.theochem.2003.08.124
- Zhang, H. Y.; Sun, Y. M.; Wang, X. L. J. Org. Chem. 2002, 67, 2709. https://doi.org/10.1021/jo016234y
- Pratt, D. A.; Dilabio, G. A.; Brigati, G.; Pedulli, G. F.; Valgimigli, L. J. Am. Chem. Soc. 2001, 123, 4625. https://doi.org/10.1021/ja005679l
- Burton, G. W.; Doba, T.; Gabe, E. J.; Hughes, L.; Lee, F. L.; Prasad, L.; Ingold, K. U. J. Am. Chem. Soc. 1985, 107, 7053. https://doi.org/10.1021/ja00310a049
- Litwinienko, G.; Ingold, K. U. J. Org. Chem. 2003, 68, 3433. https://doi.org/10.1021/jo026917t
- Litwinienko, G.; Ingold, K. U. J. Org. Chem. 2004, 69, 5888. https://doi.org/10.1021/jo049254j
- Foti, M. C.; Daquino, C.; Geraci, C. J. Org. Chem. 2004, 69, 2309. https://doi.org/10.1021/jo035758q
- Litwinienko, G.; Ingold, K. U. J. Org. Chem. 2005, 70, 8982. https://doi.org/10.1021/jo051474p
- Vianello, R.; Maksic, Z. B. Tetrahedron 2006, 62, 3402. https://doi.org/10.1016/j.tet.2006.01.049
- Fujio, M.; McIver, R. T., Jr.; Taft, R. W. J. Am. Chem. Soc. 1981, 103, 4017. https://doi.org/10.1021/ja00404a008
- McMahon, T. B.; Kebarle, P. J. Am. Chem. Soc. 1977, 99, 2222. https://doi.org/10.1021/ja00449a032
- Mulder, P.; Korth, H. G.; Ingold, K. U. Helv. Chim. Acta 2005, 88, 370. https://doi.org/10.1002/hlca.200590021
- Wang, L. F.; Zhang, H. Y. Bioorg. Chem. 2005, 33, 108. https://doi.org/10.1016/j.bioorg.2005.01.002
- Navarrete, M.; Rangel, C.; Corchado, J. C.; Espinosa-Garcia, J. J. Phys. Chem. A 2005, 109, 4777. https://doi.org/10.1021/jp050717e
- Navarrete, M.; Rangel, C.; Espinosa-Garc a, J.; Corchado, J. C. J. Chem. Theory Comput. 2005, 1, 337. https://doi.org/10.1021/ct0498932
- Wayner, D. D. M.; Lusztyk, E.; Ingold, K. U.; Mulder, P. J. Org. Chem. 1986, 61, 6430.
- Nikolic, M. K. J. Mol. Struct: Theochem. 2007, 818, 141. https://doi.org/10.1016/j.theochem.2007.05.011
- Chen, W.; Song, J.; Guo, P.; Cao, W.; Bian, J. Bioorg. Med. Chem. Lett. 2006, 16, 5874. https://doi.org/10.1016/j.bmcl.2006.08.063
- Lucarini, M.; Pederielli, P.; Pedulli, G. F.; Cabiddu, S.; Fattuoni, C. J. Org. Chem. 1996, 61, 9259. https://doi.org/10.1021/jo961039i
- Klein, E.; Lukes, V.; Ilcin, M. Chem. Phys. 2007, 336, 51. https://doi.org/10.1016/j.chemphys.2007.05.007
- Mohajeri, A.; Asemani, S. S. J. Mol. Struct: Theochem. 2009, 930, 15. https://doi.org/10.1016/j.molstruc.2009.04.031
- Krygowski, T. M.; Steupien, B. T. Chem. Rev. 2005, 105, 3482. https://doi.org/10.1021/cr030081s
- Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165. https://doi.org/10.1021/cr00002a004
- Zhu, Q.; Zhang, X. M.; Fry, A. J. Polym. Degrad. Stab. 1997, 57, 43. https://doi.org/10.1016/S0141-3910(96)00224-8
- Denisov, E. T. Polym. Degrad. Stab. 1995, 49, 71. https://doi.org/10.1016/0141-3910(95)00037-M
- Bordwell, F. G.; Cheng, J. P. J. Am. Chem. Soc. 1991, 113, 1736. https://doi.org/10.1021/ja00005a042
- Lind, J.; Shen, X.; Eriksen, T. E.; Merenyi, G. J. Am. Chem. Soc. 1990, 112, 479. https://doi.org/10.1021/ja00158a002
- Klein, E.; Lukes, V. J. Phys. Chem. A 2006, 110, 12312. https://doi.org/10.1021/jp063468i
- Chandra, A. K.; Uchimaru, T. Int. J. Mol. Sci. 2002, 3, 407. https://doi.org/10.3390/i3040407
- Klein, E.; Lukes, V. J. Mol. Struct: Theochem. 2006, 767, 43. https://doi.org/10.1016/j.theochem.2006.04.017
- Klein, E.; Lukes, V. J. Mol. Struct: Theochem. 2007, 805, 153. https://doi.org/10.1016/j.theochem.2006.11.002
- Bakalbassis, E. G.; Lithoxoidou, A. T.; Vafiadis, A. P. J. Phys. Chem. A 2003, 107, 8594. https://doi.org/10.1021/jp034400v
- Korth, H. G.; de Heer, M. I.; Mulder, P. J. Phys. Chem. A 2002, 106, 8779. https://doi.org/10.1021/jp025713d
- Bakalbassis, E. G.; Lithoxoidou, A. T.; Vafiadis, A. P. J. Phys. Chem. A 2006, 110, 11151. https://doi.org/10.1021/jp061718p
- Klein, E.; Lukes, V. Chem. Phys. 2006, 330, 515. https://doi.org/10.1016/j.chemphys.2006.09.026
- Bosque, R.; Sales, J. J. Chem. Inf. Comput. Sci. 2003, 43, 637. https://doi.org/10.1021/ci025632e
- Mulder, P.; Korth, H. G.; Pratt, D. A.; Dilabio, G. A.; Valgimigli, L.; Pedulli, G. F.; Ingold, K. U. J. Phys. Chem. A 2005, 109, 2647. https://doi.org/10.1021/jp047148f
- Jackson, R. A.; Hosseini, K. M. J. Chem. Soc. Chem. Commun. 1992, 13, 967.
- Patel, A.; Netscher, T.; Gille, L.; Mereiterd, K.; Rosenau, T. Tetrahedron 2007, 63, 5312. https://doi.org/10.1016/j.tet.2007.03.114
- Tafazoli, S.; Wright, J. S.; O'Brien, P. J. Chem. Res. Toxicol. 2005, 18, 1567. https://doi.org/10.1021/tx0500575
- Lee, S. B.; Lin, C. Y.; Gill, P. M. W.; Webster, R. D. J. Org. Chem. 2005, 70, 10466. https://doi.org/10.1021/jo0517951
- Wilson, G. J.; Lin, C. Y.; Webster, R. D. J. Phys. Chem. B 2006, 110, 11540. https://doi.org/10.1021/jp0604802
- Yamauchi, R.; Kato, K.; Ueno, Y. J. Agric. Food Chem. 1995, 43, 1455. https://doi.org/10.1021/jf00054a008
- Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. J. Phys. Chem. A 2004, 108, 4916. https://doi.org/10.1021/jp037247d
- Espinosa-Garcia, J. Chem. Phys. Lett. 2004, 338, 274.
- Guo, Y.; Zhu, Y.; Xue, Y.; Xie, D. Spectrochimica Acta Part A 2007, 68, 1287. https://doi.org/10.1016/j.saa.2007.02.005
- Zhang, H. Y.; Ji, H. F. New J. Chem. 2006, 30, 503. https://doi.org/10.1039/b600025h
- Povalishev, V. N.; Polozov, G. I.; Shadyro, O. I. Bioorg. Med. Chem. Lett. 2006, 16, 1236. https://doi.org/10.1016/j.bmcl.2005.11.078
- Singh, N. K.; O'Malley, P. J.; Popelier, P. L. A. J. Mol. Struct: Theochem. 2007, 811, 249. https://doi.org/10.1016/j.theochem.2007.01.034
- Wright, J. S.; Carpenter, D. J.; McKay, D. J.; Ingold, K. U. J. Am. Chem. Soc. 1997, 119, 4245. https://doi.org/10.1021/ja963378z
- Setiadi, D. H.; Chass, G. A.; Torday, L. L.; Varro, A.; Papp, J. G. J. Mol. Struct.: Theochem. 2003, 637, 11. https://doi.org/10.1016/S0166-1280(02)00597-3
- Wieser, H.; Vecchi, M.; Schlachter, M. Int. J. Vit. Nutr. Res. 1986, 56, 45.
- Van Acker, S. A. B. E.; Koymans, L. M. H.; Bast, A. Free Radic. Biol. Med. 1993, 15, 311. https://doi.org/10.1016/0891-5849(93)90078-9
- Mukai, K.; Yokoyama, S.; Fukuda, K.; Uemoto, Y. Bull. Chem. Soc. Jpn. 1987, 60, 2163. https://doi.org/10.1246/bcsj.60.2163
- Burton, G. W.; Le Page, Y.; Gabe, E. J.; Ingold, K. U. J. Am. Chem. Soc. 1980, 102, 7791. https://doi.org/10.1021/ja00546a032
- Najafi, M.; Nazarparvar, E.; Haghighi Mood, K.; Zahedi, M.; Klein, E. Comput. Theoret. Chem. 2011, 965, 114. https://doi.org/10.1016/j.comptc.2011.01.035
- Klein, E.; Rimarcik, J.; Lukes, V. Acta Chimica Slovaca 2009, 2, 37.
- Becke, A. D. Chem. Phys. 1993, 98, 5648.
- Becke, A. D. Phys. Rev. A 1988, 38, 3098. https://doi.org/10.1103/PhysRevA.38.3098
- Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
- Davidson, E. R.; Feller, D. Chem. Rev. 1986, 86, 681. https://doi.org/10.1021/cr00074a002
- Hehre, W. J.; Radom, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986; p 226.
- Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117. https://doi.org/10.1016/0301-0104(81)85090-2
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669. https://doi.org/10.1002/jcc.10189
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowsk, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaroni, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzales, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M. R. E. S.; Pople, J. A. Gaussian 98, Gaussian, Inc., Pittsburgh, PA, 1998.
- Bizarro, M. M.; Cabral, B. J. C.; dos Santos, R. M. B.; Simons, J. A. M. Pure Appl. Chem. 1999, 71, 1249. https://doi.org/10.1046/j.1365-3075.1999.00279.x
- Bartmess, J. E. J. Phys. Chem. 1994, 98, 6420. https://doi.org/10.1021/j100076a029
- Rimarcik, J.; Lukes, V.; Klein, E.; Ilcin, M. J. Mol. Struct.: Theochem. 2010, 952, 25. https://doi.org/10.1016/j.theochem.2010.04.002
- Nam, P. C.; Nguyen, M. T.; Chandra, A. K. J. Phys. Chem. A 2006, 110, 10904. https://doi.org/10.1021/jp0630020
- Bordwell, F. G.; Zhang, X. M.; Satish, A. V.; Cheng, J. P. J. Am. Chem. Soc. 1994, 116, 6605. https://doi.org/10.1021/ja00094a015
- Brinck, T.; Haeberline, M.; Jonsson, M. J. Am. Chem. Soc. 1997, 119, 4239. https://doi.org/10.1021/ja962931+
- de Heer, M. I.; Korth, H. G.; Mulder, P. J. Org. Chem. 1999, 64, 6969. https://doi.org/10.1021/jo9901485
- Fu, Y.; Liu, R.; Liu, L.; Guo, Q. X. J. Phys. Org. Chem. 2004, 17, 282. https://doi.org/10.1002/poc.725
- Guerra, M.; Amorati, R.; Pedulli, G. F. J. Org. Chem. 2004, 69, 5460. https://doi.org/10.1021/jo0495236
- Pratt, D. A.; Dilabio, G. A.; Mulder, P.; Ingold, K. U. Acc. Chem. Res. 2004, 37, 334. https://doi.org/10.1021/ar010010k
- Zhu, Q.; Zhang, X. M.; Fry, A. J. Polym. Degrad. Stab. 1997, 57, 43. https://doi.org/10.1016/S0141-3910(96)00224-8
- Berry, R. J.; Wilson, A. L.; Schwartz, M. J. Mol. Struct: Theochem. 2000, 496, 121. https://doi.org/10.1016/S0166-1280(99)00181-5
- Leopoldini, M.; Pitarch, I. P.; Russo, N.; Toscano, M. J. Phys. Chem. A 2004, 108, 92. https://doi.org/10.1021/jp035901j
- Najafi, M.; Zahedi, M.; Klein, E. Comput. Theoret. Chem. 2011, 978, 16. https://doi.org/10.1016/j.comptc.2011.09.014
- Klein, E.; Lukes, V.; Cibulkova, Z.; Polovkova, J. J. Mol. Struct: Theochem. 2006, 758, 149. https://doi.org/10.1016/j.theochem.2005.10.015
- Brinck, T.; Haeberline, M.; Jonsson, M. J. Am. Chem. Soc. 1997, 119, 4239. https://doi.org/10.1021/ja962931+
- DiLabio, G. A.; Pratt, D. A.; Lofaro, A.D.; Wright, J. S. J. Phys. Chem. A 1999, 103, 1653. https://doi.org/10.1021/jp984369a
- DiLabio, G. A.; Pratt, D. A.; Wright, J. S. Chem. Phys. Lett. 1999, 311, 215. https://doi.org/10.1016/S0009-2614(99)00786-1
- DiLabio, G. A.; Pratt, D. A.; Wright, J. S. J. Org. Chem. 2000, 65, 2195. https://doi.org/10.1021/jo991833e
- Migliavacca, E.; Carrupt, P. A.; Testa, B. Helv. Chim. Acta 1997, 80, 1613. https://doi.org/10.1002/hlca.19970800519
- Zhang, H. Y. J. Am. Oil. Chem. Soc. 1998, 75, 1705. https://doi.org/10.1007/s11746-998-0320-4
- Koopmans, T. Physica 1933, 1, 104.
- Zhang, H. Y. J. Am. Oil. Chem. Soc. 1999, 76, 1109. https://doi.org/10.1007/s11746-999-0211-3
- Kanchev, V. D.; Saso, L.; Boranova, P. V.; Khan, A.; Saroj, M. K.; Pandey, M. K.; Malhotra, S.; Nechev, J. Z.; Sharma, S. K.; Prasad, A. K.; Georgieva, M. B.; Joseph, C.; DePass, A. L.; Rastogi, R. C.; Parmar, V. S. Biochimie 2010, 92, 1089. https://doi.org/10.1016/j.biochi.2010.06.012
- Lavarda, F. C. Int. J. Quant. Chem. 2003, 95, 219. https://doi.org/10.1002/qua.10692
- Bi, W.; Bi, Y.; Xue, P.; Zhang, Y.; Gao, X.; Wang, Z.; Li, M.; Baudy-Floch, M.; Ngerebara, N.; Gibson, K. M.; Bi, L. J. Med. Chem. 2010, 53, 6763. https://doi.org/10.1021/jm100529e
- Najafi, M.; Haghighi, Mood, K.; Zahedi, M.; Klein, E. Comput. Theoret. Chem. 2011, 969, 1. https://doi.org/10.1016/j.comptc.2011.05.006
- Rimarcik, J.; Lukes, V.; Klein, E.; Rottmannova, L. Comput. Theoret. Chem. 2011, 967, 273. https://doi.org/10.1016/j.comptc.2011.04.029
- Dewar, M. J. S. The Molecular Orbital Theory of Organic Chemistry; McGraw-Hill: New York, 1969.
Cited by
- Antioxidant activity of omega-3 derivatives and their delivery via nanocages and nanocones: DFT and experimental in vivo investigation vol.23, pp.11, 2017, https://doi.org/10.1007/s00894-017-3504-8
- Theoretical and Experimental in vivo Study of Antioxidant Activity of Crocin in Order to Propose Novel Derivatives with Higher Antioxidant Activity and Their Delivery via Nanotubes and Nanocones vol.40, pp.5, 2017, https://doi.org/10.1007/s10753-017-0623-4