DOI QR코드

DOI QR Code

DFT/B3LYP Study of the Substituent Effects on the Reaction Enthalpies of the Antioxidant Mechanisms of Magnolol Derivatives in the Gas-Phase and Water

  • Najafi, Meysam (Department of physiology, Faculty of Medicine, Kermanshah University of Medical Sciences) ;
  • Najafi, Mohammad (Department of physiology, Faculty of Medicine, Kermanshah University of Medical Sciences) ;
  • Najafi, Houshang (Department of physiology, Faculty of Medicine, Kermanshah University of Medical Sciences)
  • Received : 2012.05.24
  • Accepted : 2012.08.07
  • Published : 2012.11.20

Abstract

In this paper, the study of various ortho- and meta-substituted Magnolol derivatives is presented. The reaction enthalpies related to three antioxidant action mechanisms HAT, SET-PT and SPLET for substituted Magnolols have been calculated using DFT/B3LYP method in gas-phase and water. Calculated results show that electron-withdrawing substituents increase the bond dissociation enthalpy (BDE), ionization potential (IP) and oxidation/reduction enthalpy (O/RE), while electron-donating ones cause a rise in the proton dissociation enthalpy (PDE) and proton affinity (PA). In ortho- position, substituents show larger effect on reaction enthalpies than in meta-position. In comparison to gas-phase, water attenuates the substituent effect on all reaction enthalpies. In gas-phase, BDEs are lower than PAs and IPs, i.e. HAT represents the thermodynamically preferred pathway. On the other hand, SPLET mechanism represents the thermodynamically favored process in water. Results show that calculated enthalpies can be successfully correlated with Hammett constants (${\sigma}_m$) of the substituted Magnolols. Furthermore, calculated IP and PA values for substituted Magnolols show linear dependence on the energy of the highest occupied molecular orbital ($E_{HOMO}$).

Keywords

References

  1. Pryor, W. A. Free Radic. Biol. Med. 2000, 28, 141. https://doi.org/10.1016/S0891-5849(99)00224-5
  2. Matsui, N.; Nakashima, H.; Ushio, Y. Biol. Pharm. Bull. 2005, 28, 1762. https://doi.org/10.1248/bpb.28.1762
  3. Lin, Y. R.; Chen, H. H.; Ko, C. H.; Chan, M. H. Eur. J. Pharm. 2006, 537, 64. https://doi.org/10.1016/j.ejphar.2006.03.035
  4. Chen, C. M.; Liu, S. H.; Lin-Shiau, S. Y. Basic and Clinical Pharmacology and Toxicology 2007, 101, 108. https://doi.org/10.1111/j.1742-7843.2007.00082.x
  5. Matsui, N.; Takahashi, K.; Takeichi, M. Brain Research 2009, 1305, 108. https://doi.org/10.1016/j.brainres.2009.09.107
  6. Chen, H. H.; Lin, S. C.; Chan M. H.; Neurodegenerative Diseases 2011, 8, 364. https://doi.org/10.1159/000323872
  7. Fukuyama, Y.; Nakade, K.; Minoshima, Y.; Yokoyama, R.; Zhai, H.; Mitsumoto, Y. Bioorg. Med. Chem. Lett. 2002, 12, 1163. https://doi.org/10.1016/S0960-894X(02)00112-9
  8. Zhai, H.; Nakade, K.; Oda, M. Eur. J. Pharm. 2005, 516, 112. https://doi.org/10.1016/j.ejphar.2005.04.035
  9. Zhai, H.; Nakade, K.; Mitsumoto, Y.; Fukuyama, Y. Eur. J. Pharm. 2003, 474, 199. https://doi.org/10.1016/S0014-2999(03)02075-2
  10. Mori, A.; Ohashi, S.; Nakai, M.; Moriizumi, T.; Mitsumoto, Y. Neuroscience Research 2005, 51, 265. https://doi.org/10.1016/j.neures.2004.11.008
  11. Wright, J. S.; Johnson, E. R.; Dilabio, G. A. J. Am. Chem. Soc. 2001, 123, 1173. https://doi.org/10.1021/ja002455u
  12. Vafiadis, A. P.; Bakalbassis, E. G. Chem. Phys. 2005, 316, 195. https://doi.org/10.1016/j.chemphys.2005.05.015
  13. Musialik, M.; Litwinienko, G. Org. Lett. 2005, 7, 4951. https://doi.org/10.1021/ol051962j
  14. Zhang, H. Y.; Ji, H. F. J. Mol. Struct: Theochem. 2003, 663, 167. https://doi.org/10.1016/j.theochem.2003.08.124
  15. Zhang, H. Y.; Sun, Y. M.; Wang, X. L. J. Org. Chem. 2002, 67, 2709. https://doi.org/10.1021/jo016234y
  16. Pratt, D. A.; Dilabio, G. A.; Brigati, G.; Pedulli, G. F.; Valgimigli, L. J. Am. Chem. Soc. 2001, 123, 4625. https://doi.org/10.1021/ja005679l
  17. Burton, G. W.; Doba, T.; Gabe, E. J.; Hughes, L.; Lee, F. L.; Prasad, L.; Ingold, K. U. J. Am. Chem. Soc. 1985, 107, 7053. https://doi.org/10.1021/ja00310a049
  18. Litwinienko, G.; Ingold, K. U. J. Org. Chem. 2003, 68, 3433. https://doi.org/10.1021/jo026917t
  19. Litwinienko, G.; Ingold, K. U. J. Org. Chem. 2004, 69, 5888. https://doi.org/10.1021/jo049254j
  20. Foti, M. C.; Daquino, C.; Geraci, C. J. Org. Chem. 2004, 69, 2309. https://doi.org/10.1021/jo035758q
  21. Litwinienko, G.; Ingold, K. U. J. Org. Chem. 2005, 70, 8982. https://doi.org/10.1021/jo051474p
  22. Vianello, R.; Maksic, Z. B. Tetrahedron 2006, 62, 3402. https://doi.org/10.1016/j.tet.2006.01.049
  23. Fujio, M.; McIver, R. T., Jr.; Taft, R. W. J. Am. Chem. Soc. 1981, 103, 4017. https://doi.org/10.1021/ja00404a008
  24. McMahon, T. B.; Kebarle, P. J. Am. Chem. Soc. 1977, 99, 2222. https://doi.org/10.1021/ja00449a032
  25. Mulder, P.; Korth, H. G.; Ingold, K. U. Helv. Chim. Acta 2005, 88, 370. https://doi.org/10.1002/hlca.200590021
  26. Wang, L. F.; Zhang, H. Y. Bioorg. Chem. 2005, 33, 108. https://doi.org/10.1016/j.bioorg.2005.01.002
  27. Navarrete, M.; Rangel, C.; Corchado, J. C.; Espinosa-Garcia, J. J. Phys. Chem. A 2005, 109, 4777. https://doi.org/10.1021/jp050717e
  28. Navarrete, M.; Rangel, C.; Espinosa-Garc a, J.; Corchado, J. C. J. Chem. Theory Comput. 2005, 1, 337. https://doi.org/10.1021/ct0498932
  29. Wayner, D. D. M.; Lusztyk, E.; Ingold, K. U.; Mulder, P. J. Org. Chem. 1986, 61, 6430.
  30. Nikolic, M. K. J. Mol. Struct: Theochem. 2007, 818, 141. https://doi.org/10.1016/j.theochem.2007.05.011
  31. Chen, W.; Song, J.; Guo, P.; Cao, W.; Bian, J. Bioorg. Med. Chem. Lett. 2006, 16, 5874. https://doi.org/10.1016/j.bmcl.2006.08.063
  32. Lucarini, M.; Pederielli, P.; Pedulli, G. F.; Cabiddu, S.; Fattuoni, C. J. Org. Chem. 1996, 61, 9259. https://doi.org/10.1021/jo961039i
  33. Klein, E.; Lukes, V.; Ilcin, M. Chem. Phys. 2007, 336, 51. https://doi.org/10.1016/j.chemphys.2007.05.007
  34. Mohajeri, A.; Asemani, S. S. J. Mol. Struct: Theochem. 2009, 930, 15. https://doi.org/10.1016/j.molstruc.2009.04.031
  35. Krygowski, T. M.; Steupien, B. T. Chem. Rev. 2005, 105, 3482. https://doi.org/10.1021/cr030081s
  36. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165. https://doi.org/10.1021/cr00002a004
  37. Zhu, Q.; Zhang, X. M.; Fry, A. J. Polym. Degrad. Stab. 1997, 57, 43. https://doi.org/10.1016/S0141-3910(96)00224-8
  38. Denisov, E. T. Polym. Degrad. Stab. 1995, 49, 71. https://doi.org/10.1016/0141-3910(95)00037-M
  39. Bordwell, F. G.; Cheng, J. P. J. Am. Chem. Soc. 1991, 113, 1736. https://doi.org/10.1021/ja00005a042
  40. Lind, J.; Shen, X.; Eriksen, T. E.; Merenyi, G. J. Am. Chem. Soc. 1990, 112, 479. https://doi.org/10.1021/ja00158a002
  41. Klein, E.; Lukes, V. J. Phys. Chem. A 2006, 110, 12312. https://doi.org/10.1021/jp063468i
  42. Chandra, A. K.; Uchimaru, T. Int. J. Mol. Sci. 2002, 3, 407. https://doi.org/10.3390/i3040407
  43. Klein, E.; Lukes, V. J. Mol. Struct: Theochem. 2006, 767, 43. https://doi.org/10.1016/j.theochem.2006.04.017
  44. Klein, E.; Lukes, V. J. Mol. Struct: Theochem. 2007, 805, 153. https://doi.org/10.1016/j.theochem.2006.11.002
  45. Bakalbassis, E. G.; Lithoxoidou, A. T.; Vafiadis, A. P. J. Phys. Chem. A 2003, 107, 8594. https://doi.org/10.1021/jp034400v
  46. Korth, H. G.; de Heer, M. I.; Mulder, P. J. Phys. Chem. A 2002, 106, 8779. https://doi.org/10.1021/jp025713d
  47. Bakalbassis, E. G.; Lithoxoidou, A. T.; Vafiadis, A. P. J. Phys. Chem. A 2006, 110, 11151. https://doi.org/10.1021/jp061718p
  48. Klein, E.; Lukes, V. Chem. Phys. 2006, 330, 515. https://doi.org/10.1016/j.chemphys.2006.09.026
  49. Bosque, R.; Sales, J. J. Chem. Inf. Comput. Sci. 2003, 43, 637. https://doi.org/10.1021/ci025632e
  50. Mulder, P.; Korth, H. G.; Pratt, D. A.; Dilabio, G. A.; Valgimigli, L.; Pedulli, G. F.; Ingold, K. U. J. Phys. Chem. A 2005, 109, 2647. https://doi.org/10.1021/jp047148f
  51. Jackson, R. A.; Hosseini, K. M. J. Chem. Soc. Chem. Commun. 1992, 13, 967.
  52. Patel, A.; Netscher, T.; Gille, L.; Mereiterd, K.; Rosenau, T. Tetrahedron 2007, 63, 5312. https://doi.org/10.1016/j.tet.2007.03.114
  53. Tafazoli, S.; Wright, J. S.; O'Brien, P. J. Chem. Res. Toxicol. 2005, 18, 1567. https://doi.org/10.1021/tx0500575
  54. Lee, S. B.; Lin, C. Y.; Gill, P. M. W.; Webster, R. D. J. Org. Chem. 2005, 70, 10466. https://doi.org/10.1021/jo0517951
  55. Wilson, G. J.; Lin, C. Y.; Webster, R. D. J. Phys. Chem. B 2006, 110, 11540. https://doi.org/10.1021/jp0604802
  56. Yamauchi, R.; Kato, K.; Ueno, Y. J. Agric. Food Chem. 1995, 43, 1455. https://doi.org/10.1021/jf00054a008
  57. Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. J. Phys. Chem. A 2004, 108, 4916. https://doi.org/10.1021/jp037247d
  58. Espinosa-Garcia, J. Chem. Phys. Lett. 2004, 338, 274.
  59. Guo, Y.; Zhu, Y.; Xue, Y.; Xie, D. Spectrochimica Acta Part A 2007, 68, 1287. https://doi.org/10.1016/j.saa.2007.02.005
  60. Zhang, H. Y.; Ji, H. F. New J. Chem. 2006, 30, 503. https://doi.org/10.1039/b600025h
  61. Povalishev, V. N.; Polozov, G. I.; Shadyro, O. I. Bioorg. Med. Chem. Lett. 2006, 16, 1236. https://doi.org/10.1016/j.bmcl.2005.11.078
  62. Singh, N. K.; O'Malley, P. J.; Popelier, P. L. A. J. Mol. Struct: Theochem. 2007, 811, 249. https://doi.org/10.1016/j.theochem.2007.01.034
  63. Wright, J. S.; Carpenter, D. J.; McKay, D. J.; Ingold, K. U. J. Am. Chem. Soc. 1997, 119, 4245. https://doi.org/10.1021/ja963378z
  64. Setiadi, D. H.; Chass, G. A.; Torday, L. L.; Varro, A.; Papp, J. G. J. Mol. Struct.: Theochem. 2003, 637, 11. https://doi.org/10.1016/S0166-1280(02)00597-3
  65. Wieser, H.; Vecchi, M.; Schlachter, M. Int. J. Vit. Nutr. Res. 1986, 56, 45.
  66. Van Acker, S. A. B. E.; Koymans, L. M. H.; Bast, A. Free Radic. Biol. Med. 1993, 15, 311. https://doi.org/10.1016/0891-5849(93)90078-9
  67. Mukai, K.; Yokoyama, S.; Fukuda, K.; Uemoto, Y. Bull. Chem. Soc. Jpn. 1987, 60, 2163. https://doi.org/10.1246/bcsj.60.2163
  68. Burton, G. W.; Le Page, Y.; Gabe, E. J.; Ingold, K. U. J. Am. Chem. Soc. 1980, 102, 7791. https://doi.org/10.1021/ja00546a032
  69. Najafi, M.; Nazarparvar, E.; Haghighi Mood, K.; Zahedi, M.; Klein, E. Comput. Theoret. Chem. 2011, 965, 114. https://doi.org/10.1016/j.comptc.2011.01.035
  70. Klein, E.; Rimarcik, J.; Lukes, V. Acta Chimica Slovaca 2009, 2, 37.
  71. Becke, A. D. Chem. Phys. 1993, 98, 5648.
  72. Becke, A. D. Phys. Rev. A 1988, 38, 3098. https://doi.org/10.1103/PhysRevA.38.3098
  73. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  74. Davidson, E. R.; Feller, D. Chem. Rev. 1986, 86, 681. https://doi.org/10.1021/cr00074a002
  75. Hehre, W. J.; Radom, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986; p 226.
  76. Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117. https://doi.org/10.1016/0301-0104(81)85090-2
  77. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669. https://doi.org/10.1002/jcc.10189
  78. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowsk, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaroni, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzales, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M. R. E. S.; Pople, J. A. Gaussian 98, Gaussian, Inc., Pittsburgh, PA, 1998.
  79. Bizarro, M. M.; Cabral, B. J. C.; dos Santos, R. M. B.; Simons, J. A. M. Pure Appl. Chem. 1999, 71, 1249. https://doi.org/10.1046/j.1365-3075.1999.00279.x
  80. Bartmess, J. E. J. Phys. Chem. 1994, 98, 6420. https://doi.org/10.1021/j100076a029
  81. Rimarcik, J.; Lukes, V.; Klein, E.; Ilcin, M. J. Mol. Struct.: Theochem. 2010, 952, 25. https://doi.org/10.1016/j.theochem.2010.04.002
  82. Nam, P. C.; Nguyen, M. T.; Chandra, A. K. J. Phys. Chem. A 2006, 110, 10904. https://doi.org/10.1021/jp0630020
  83. Bordwell, F. G.; Zhang, X. M.; Satish, A. V.; Cheng, J. P. J. Am. Chem. Soc. 1994, 116, 6605. https://doi.org/10.1021/ja00094a015
  84. Brinck, T.; Haeberline, M.; Jonsson, M. J. Am. Chem. Soc. 1997, 119, 4239. https://doi.org/10.1021/ja962931+
  85. de Heer, M. I.; Korth, H. G.; Mulder, P. J. Org. Chem. 1999, 64, 6969. https://doi.org/10.1021/jo9901485
  86. Fu, Y.; Liu, R.; Liu, L.; Guo, Q. X. J. Phys. Org. Chem. 2004, 17, 282. https://doi.org/10.1002/poc.725
  87. Guerra, M.; Amorati, R.; Pedulli, G. F. J. Org. Chem. 2004, 69, 5460. https://doi.org/10.1021/jo0495236
  88. Pratt, D. A.; Dilabio, G. A.; Mulder, P.; Ingold, K. U. Acc. Chem. Res. 2004, 37, 334. https://doi.org/10.1021/ar010010k
  89. Zhu, Q.; Zhang, X. M.; Fry, A. J. Polym. Degrad. Stab. 1997, 57, 43. https://doi.org/10.1016/S0141-3910(96)00224-8
  90. Berry, R. J.; Wilson, A. L.; Schwartz, M. J. Mol. Struct: Theochem. 2000, 496, 121. https://doi.org/10.1016/S0166-1280(99)00181-5
  91. Leopoldini, M.; Pitarch, I. P.; Russo, N.; Toscano, M. J. Phys. Chem. A 2004, 108, 92. https://doi.org/10.1021/jp035901j
  92. Najafi, M.; Zahedi, M.; Klein, E. Comput. Theoret. Chem. 2011, 978, 16. https://doi.org/10.1016/j.comptc.2011.09.014
  93. Klein, E.; Lukes, V.; Cibulkova, Z.; Polovkova, J. J. Mol. Struct: Theochem. 2006, 758, 149. https://doi.org/10.1016/j.theochem.2005.10.015
  94. Brinck, T.; Haeberline, M.; Jonsson, M. J. Am. Chem. Soc. 1997, 119, 4239. https://doi.org/10.1021/ja962931+
  95. DiLabio, G. A.; Pratt, D. A.; Lofaro, A.D.; Wright, J. S. J. Phys. Chem. A 1999, 103, 1653. https://doi.org/10.1021/jp984369a
  96. DiLabio, G. A.; Pratt, D. A.; Wright, J. S. Chem. Phys. Lett. 1999, 311, 215. https://doi.org/10.1016/S0009-2614(99)00786-1
  97. DiLabio, G. A.; Pratt, D. A.; Wright, J. S. J. Org. Chem. 2000, 65, 2195. https://doi.org/10.1021/jo991833e
  98. Migliavacca, E.; Carrupt, P. A.; Testa, B. Helv. Chim. Acta 1997, 80, 1613. https://doi.org/10.1002/hlca.19970800519
  99. Zhang, H. Y. J. Am. Oil. Chem. Soc. 1998, 75, 1705. https://doi.org/10.1007/s11746-998-0320-4
  100. Koopmans, T. Physica 1933, 1, 104.
  101. Zhang, H. Y. J. Am. Oil. Chem. Soc. 1999, 76, 1109. https://doi.org/10.1007/s11746-999-0211-3
  102. Kanchev, V. D.; Saso, L.; Boranova, P. V.; Khan, A.; Saroj, M. K.; Pandey, M. K.; Malhotra, S.; Nechev, J. Z.; Sharma, S. K.; Prasad, A. K.; Georgieva, M. B.; Joseph, C.; DePass, A. L.; Rastogi, R. C.; Parmar, V. S. Biochimie 2010, 92, 1089. https://doi.org/10.1016/j.biochi.2010.06.012
  103. Lavarda, F. C. Int. J. Quant. Chem. 2003, 95, 219. https://doi.org/10.1002/qua.10692
  104. Bi, W.; Bi, Y.; Xue, P.; Zhang, Y.; Gao, X.; Wang, Z.; Li, M.; Baudy-Floch, M.; Ngerebara, N.; Gibson, K. M.; Bi, L. J. Med. Chem. 2010, 53, 6763. https://doi.org/10.1021/jm100529e
  105. Najafi, M.; Haghighi, Mood, K.; Zahedi, M.; Klein, E. Comput. Theoret. Chem. 2011, 969, 1. https://doi.org/10.1016/j.comptc.2011.05.006
  106. Rimarcik, J.; Lukes, V.; Klein, E.; Rottmannova, L. Comput. Theoret. Chem. 2011, 967, 273. https://doi.org/10.1016/j.comptc.2011.04.029
  107. Dewar, M. J. S. The Molecular Orbital Theory of Organic Chemistry; McGraw-Hill: New York, 1969.

Cited by

  1. Antioxidant activity of omega-3 derivatives and their delivery via nanocages and nanocones: DFT and experimental in vivo investigation vol.23, pp.11, 2017, https://doi.org/10.1007/s00894-017-3504-8
  2. Theoretical and Experimental in vivo Study of Antioxidant Activity of Crocin in Order to Propose Novel Derivatives with Higher Antioxidant Activity and Their Delivery via Nanotubes and Nanocones vol.40, pp.5, 2017, https://doi.org/10.1007/s10753-017-0623-4