DOI QR코드

DOI QR Code

Solvation of a Small Metal-Binding Peptide in Room-Temperature Ionic Liquids

  • Shim, Youngseon (Department of Chemistry, Seoul National University) ;
  • Kim, Hyung J. (Department of Chemistry, Carnegie Mellon University) ;
  • Jung, YounJoon (Department of Chemistry, Seoul National University)
  • Received : 2012.06.25
  • Accepted : 2012.08.07
  • Published : 2012.11.20

Abstract

Structural properties of a small hexapeptide molecule modeled after metal-binding siderochrome immersed in a room-temperature ionic liquid (RTIL) are studied via molecular dynamics simulations. We consider two different RTILs, each of which is made up of the same cationic species, 1-butyl-3-methylimidazolium ($BMI^+$), but different anions, hexafluorophosphate ($PF_6{^-}$) and chloride ($Cl^-$). We investigate how anionic properties such as hydrophobicity/hydrophilicity or hydrogen bonding capability affect the stabilization of the peptide in RTILs. To examine the effect of peptide-RTIL electrostatic interactions on solvation, we also consider a hypothetical solvent $BMI^0Cl^0$, a non-ionic counter-part of $BMI^+Cl^-$. For reference, we investigate solvation structures in common polar solvents, water and dimethylsulfoxide (DMSO). Comparison of $BMI^+Cl^-$ and $BMI^0Cl^0$ shows that electrostatic interactions of the peptide and RTIL play a significant role in the conformational fluctuation of the peptide. For example, strong electrostatic interactions between the two favor an extended conformation of the peptide by reducing its structural fluctuations. The hydrophobicity/hydrophilicity of RTIL anions also exerts a notable influence; specifically, structural fluctuations of the peptide become reduced in more hydrophilic $BMI^+Cl^-$, compared with those in more hydrophobic $BMI^+PF_6{^-}$. This is ascribed to the good hydrogen-bond accepting power of chloride anions, which enables them to bind strongly to hydroxyl groups of the peptide and to stabilize its structure. Transport properties of the peptide are examined briefly. Translations of the peptide significantly slow down in highly viscous RTILs.

Keywords

References

  1. Rantwijk, F. van; Sheldon, R. A. Chem. Rev. 2007, 107, 2757. https://doi.org/10.1021/cr050946x
  2. Parvulescu, V. I.; Hardacre, C. Chem. Rev. 2007, 107, 2615. https://doi.org/10.1021/cr050948h
  3. Yang, Z.; Pan, W. Enzyme and Microbial Technology 2005, 37, 19. https://doi.org/10.1016/j.enzmictec.2005.02.014
  4. Gordon, C. M. Appl. Catal. 2001, 222, 101. https://doi.org/10.1016/S0926-860X(01)00834-1
  5. Fujita, K.; MacFarlane, D. R.; Forsyth, M. Chem. Comm. 2005, 4804.
  6. Diego, T. De; Lozano, P.; Gmouth, S.; Vaultire, M.; Iborra, J. L. Biomacromolecules 2005, 6, 1457. https://doi.org/10.1021/bm049259q
  7. Rantwijk, F. van; Secundo, F.; Sheldon, R. A. Green Chemistry 2006, 8, 282. https://doi.org/10.1039/b513062j
  8. Baker, S. N.; McCleskey, T. M.; Pandey, S.; Baker, G. A. Chem. Comm. 2004, 940.
  9. Biswas, A.; Shogren, R. L.; Stevenson, D. G.; Willett, J. L.; Bhowmik, P. K. Carbohydrate Polymers 2006, 66, 546. https://doi.org/10.1016/j.carbpol.2006.04.005
  10. Summers, C. A.; Flowers II, R. A. Protein Science 2000, 9, 2001. https://doi.org/10.1110/ps.9.10.2001
  11. Lange, C.; Patil, G.; Rudolph, R. Protein Science 2005, 14, 2693. https://doi.org/10.1110/ps.051596605
  12. Haberler, M.; Schroder, C.; Steinhauser, O. Phys. Chem. Chem. Phys. 2011, 13, 6955. https://doi.org/10.1039/c0cp02487b
  13. Haberler, M.; Steinhauser, O. Phys. Chem. Chem. Phys. 2011, 13, 17994. https://doi.org/10.1039/c1cp22266j
  14. Tome, L. I. N.; Jorge, M.; Gomes, J. R. B.; Coutinho, J. A. P. J. Phys. Chem. B 2012, 116, 1831. https://doi.org/10.1021/jp209625e
  15. Cardoso, L.; Micaelo, N. M. ChemPhysChem. 2011, 12, 275. https://doi.org/10.1002/cphc.201000645
  16. Tateishi-Karimata, H.; Sugimoto, N. Angew. Chem. Int. Ed. 2012, 51, 1416. https://doi.org/10.1002/anie.201106423
  17. Vijayaraghavan, R.; Izgorodin, A.; Ganesh, V.; Surianarayanan, M.; MacFarlane, D. R. Angew. Chem. Int. Ed. 2010, 122, 1675. https://doi.org/10.1002/ange.200906610
  18. Klahn, M.; Lim, G. S.; Wu, P. Phys. Chem. Chem. Phys. 2011, 13, 18647. https://doi.org/10.1039/c1cp22056j
  19. Lozano, P.; Diego, T. de; Guegan, J. P.; Vaultier, M.; Iborra, J. L. Biotechnol. Bioeng. 2001, 75, 563. https://doi.org/10.1002/bit.10089
  20. Ulbert, O.; Bela-Bako, K.; Tonova, K.; Gubicza, L. Biocatal. Biotransform. 2005, 23, 177. https://doi.org/10.1080/10242420500192940
  21. Persson, M.; Bornscheuer, U. T. J. Mol. Catal. B: Enzym. 2003, 22, 21. https://doi.org/10.1016/S1381-1177(02)00294-1
  22. Rios, A. P. de los; Hernandez-Fernandez, F. J.; Rubio, M.; Gomez, D.; Villora, G. J. Chem. Technol. Biotechnol. 2007, 82, 190. https://doi.org/10.1002/jctb.1654
  23. Micaelo, N. M.; Soares, C. M. J. Phys. Chem. B 2008, 112, 2566. https://doi.org/10.1021/jp0766050
  24. Klahn, M.; Lim, G. S.; Wu, P. Phys. Chem. Chem. Phys. 2011, 13, 1649. https://doi.org/10.1039/c0cp01509a
  25. Llinas, M. Metal-polypeptide Interactions: The Conformational State of Iron Proteins, Structure and Bonding 1973, 17, 135.
  26. Canongia Lopes, J. N.; Deschamps, J.; Padua, A. A. H. J. Phys. Chem. B 2004, 108, 2038; 2004, 108, 11250.
  27. Dang, L. X.; Chang, T. M. J. Chem. Phys. 2002, 106, 235. https://doi.org/10.1021/jp011853w
  28. Kaminski, G.; Jorgensen, W. L. J. Chem. Soc. Perkin Trans 2 1999, 2365.
  29. Forster, T. R.; Smith, W. The DLPROTEIN 2.1 Reference Manual (Warrington, CCLRC, Daresbury Laboratory, 2001).
  30. van Gunsteren, W. F.; Berendsen, H. J. C. Groningen Molecular Simulation (GROMOS) Library Manual, Biomos, (Groningen, 1987).
  31. Forster, T. R.; Smith, W. The DLPOLY 2.13 Reference Manual (Warrington, CCLRC, Daresbury Laboratory, 2001).
  32. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics J. Mol. Graphics 1996, 14, 33. https://doi.org/10.1016/0263-7855(96)00018-5
  33. Endres, F.; MacFarlane, D.; Abbott, A. Electrodeposition from Ionic Liquids; Wiley: New York, 2008.
  34. Shim, Y.; Jeong, D.; Manjari, S.; Choi, M. Y.; Kim, H. J. Acc. Chem. Res. 2007, 40, 1130. https://doi.org/10.1021/ar700061r
  35. Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269. https://doi.org/10.1021/j100308a038
  36. Luzar, A.; Soper, A. K.; Chandler, D. J. Chem. Phys. 1993, 99, 6836. https://doi.org/10.1063/1.465828
  37. Benjamin, I. J. Chem. Phys. 1999, 110, 8070. https://doi.org/10.1063/1.478708
  38. Kabsch, W. Acta. Crystal. 1976, 32A, 922
  39. Kabsch, W. Acta. Crystal. 1978, 32A, 827.
  40. Danmjanovic, A.; Garcia-Moreno, B.; Lattman, E. E.; Garcia, A. E. PROTEINS; Structure, Function, and Bioinformatics 2005, 60, 433. https://doi.org/10.1002/prot.20486

Cited by

  1. On the Nature of Interactions between Ionic Liquids and Small Amino-Acid-Based Biomolecules vol.14, pp.18, 2013, https://doi.org/10.1002/cphc.201300736
  2. An AIL/IL-based liquid/liquid extraction system for the purification of His-tagged proteins vol.98, pp.12, 2014, https://doi.org/10.1007/s00253-014-5737-0