DOI QR코드

DOI QR Code

Synthesis of Cyclic Antifreeze Glycopeptide and Glycopeptoids and Their Ice Recrystallization Inhibition Activity

  • Ahn, Mija (Division of Magnetic Resonance, Korea Basic Science Institute) ;
  • Murugan, Ravichandran N. (Division of Magnetic Resonance, Korea Basic Science Institute) ;
  • Shin, Song Yub (Department of Bio-Materials, Graduate School and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University) ;
  • Kim, Eunjung (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Lee, Jun Hyuck (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Kim, Hak Jun (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Bang, Jeong Kyu (Division of Magnetic Resonance, Korea Basic Science Institute)
  • Received : 2012.07.26
  • Accepted : 2012.08.13
  • Published : 2012.11.20

Abstract

Until now, few groups reported the antifreeze activity of cyclic glycopeptides; however, the tedious synthetic procedure is not amenable to study the intensive structure activity relationship. A series of N-linked cyclic glycopeptoids and glycopeptide have been prepared to evaluate antifreeze activity as a function of peptide backbone cyclization and methyl stereochemical effect on the rigid Thr position. This study has combined the cyclization protocol with solid phase peptide synthesis and obtained significant quantities of homogeneous cyclic glycopeptide and glycopeptoids. Analysis of antifreeze activity revealed that our cyclic peptide demonstrated RI activity while cyclic glycopeptoids showed no RI activity. These results suggest that the subtle changes in conformation and Thr orientation dramatically influence RI activity of N-linked glycopeptoids.

Keywords

References

  1. Yeh, Y.; Feeney, R. E. Chem. Rev. 1996, 96, 601. https://doi.org/10.1021/cr950260c
  2. Wang, T.; Zhu, Q.; Yang, X.; Layan, J. R.; DeVries, A. L. Biopolymers 1994, 31, 185.
  3. Petzel, D. H.; DeVries, A. L. Cryobiology 1997, 16, 585.
  4. Ben, R. N.; Eniade, A. A.; Hauer, L. Org. Lett. 1999, 1, 1759. https://doi.org/10.1021/ol991025+
  5. Liu, S.; Wang, W.; Moos, E.; Jackman, J.; Mealing, G.; Monette, R.; Ben, R. N. Biomacromolecules 2007, 8, 1456. https://doi.org/10.1021/bm061044o
  6. Hachisu, M.; Hinou, H.; Yakamichi, M.; Tsuda, S.; Koshida, S.; Nishimura, S. Chem Commun. 2009, 1641.
  7. Tachibana, Y.; Fletcher, G. L.; Fujitani, N.; Tsuda, S.; Monda, K.; Nishimura, S. Angew. Chem. Int. Ed. 2004, 43, 856. https://doi.org/10.1002/anie.200353110
  8. Ahn, M.; Muragan, R. N.; Nan, Y. H.; Cheong, C.; Sohn, H.; Kim, E. H.; Hwang, E.; Ryu, E. K.; Kang, S. H.; Shin, S. Y.; Bang, J. K. Bioorg. Med. Chem. Lett. 2011, 21, 6148. https://doi.org/10.1016/j.bmcl.2011.08.012
  9. Ahn, M.; Sohn, H.; Nan, Y. H.; Muragan, R. N.; Cheong, C.; Ryu, E. K.; Kim, E. H.; Kang, S. W.; Kim, E. J.; Shin, S. Y.; Bang, J. K. Bull. Korean Chem. Soc. 2011, 32, 3327. https://doi.org/10.5012/bkcs.2011.32.9.3327
  10. Uda, Y.; Zeppeda, S.; Kaneko, F.; Matsuura, Y.; Furukawa, Y. J. Phy. Chem. B 2007, 111, 14355. https://doi.org/10.1021/jp075429s
  11. Zuckermann, R. N.; Kerr, J. M.; Kent, S. H.; Moos, W. H. J. Am. Chem. Soc. 1992, 114, 10646. https://doi.org/10.1021/ja00052a076

Cited by

  1. Antifreeze Peptides and Glycopeptides, and Their Derivatives: Potential Uses in Biotechnology vol.11, pp.6, 2013, https://doi.org/10.3390/md11062013
  2. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012 vol.36, pp.3, 2015, https://doi.org/10.1002/mas.21471
  3. Ice-Binding Proteins and Their Function vol.85, pp.1, 2016, https://doi.org/10.1146/annurev-biochem-060815-014546
  4. From Glycopeptides to Glycopeptoids vol.2014, pp.26, 2012, https://doi.org/10.1002/ejoc.201402238
  5. Antifreeze glycopeptides: from structure and activity studies to current approaches in chemical synthesis vol.49, pp.2, 2012, https://doi.org/10.1007/s00726-016-2368-z