DOI QR코드

DOI QR Code

Evaluation of the Effect of Urban-agriculture on Urban Heat Island Mitigation

도시농업의 도시열섬현상 저감효과에 대한 계량화 평가연구

  • Received : 2012.08.10
  • Accepted : 2012.09.08
  • Published : 2012.10.30

Abstract

Vegetation can make not only to lower the urban ambient air temperature (UAAT) by crop evapotranspiration (ET) and increasing solar radiation albedo, but also to reduce the urban air pollution by $CO_2$ uptake and $O_2$ emission in addition to the reducing ozone concentrations by aid of lower the UAAT. To evaluate the effect of vegetation on urban heat island mitigation (UHIM), the climate change of 6 cities during 30 years are analysed, and the amount of ET, $CO_2$ uptake, $O_2$ emission and ozone concentrations are estimated in Korea. The most hot season is the last part of July and the first part of August, and the highest average UAAT of a period of ten days was $35.03^{\circ}C$ during 30 years (1979 - 2008). The mean values of maximum ET of rice and soybean in urban area during urban heat island phenomena were 6.86 and $6.00mm\;day^{-1}$, respectively. The effect of rice and soybean cultivation on lowering the UAAT was assessed to be 10.5 and $3.0^{\circ}C$ in Suwon, respectively, whereas the differences between the UAAT and canopy temperature at urban paddy and upland in Ansung were 2.6 and $2.2^{\circ}C$. On the other hand, the urban-garden in Suwon city had resulted in lowering the UAAT and the surface temperature of buildings to 2.0 and $14.5^{\circ}C$, respectively. Furthermore, the amounts of $CO_2$ uptake by rice and soybean were estimated to be 20.27 and $15.54kg\;CO_2\;10a^{-1}day^{-1}$, respectively. The amounts of $O_2$ emission by rice and soybean were also assessed to be 14.74 and $11.30kg\;O_2\;10a^{-1}day^{-1}$, respectively. As other cleaning effect of air pollution, the ozone concentrations could be also estimated to reduce 21.0, 8.8, and 4.0 ppb through rice-, soybean cultivation, and urban gardening during most highest temperature period in summer, respectively.

도시지역의 식물에 의한 도시열섬 현상 저감 효과를 구명하기 위하여 서울, 부산, 대구, 대전, 광주, 수원 등 6개 도시지역의 근래 30년간 (1979-2008) 폭염기의 최고온도, 식물에 의한 온도 하강, 작물 증발산량, 대기오염 방지 기능 등을 조사 분석한 결과는 다음과 같다. 1. 서울, 수원 등 6개 도시의 30년간 (1979-2008) 년 중 폭염기인 7월 하순과 8월 상순의 순 평균최고기온의 평균값은 $35.03^{\circ}C$ 이었다. 2. 6개 도시의 폭염기 (7월하순 - 8월상순) 동안 벼와 콩의 최대 일평균증발산량은 각각 $6.86ton\;10a^{-1}day^{-1}$$6.00ton\;10a^{-1}day^{-1}$ 이었다. 3. 수원시 중심지에 위치한 도시 농경지의 도시열섬 저감 효과의 지표로 볼 수 있는, 벼 및 콩 군락의 온도와 기온과의 차이는 각각 $10.5^{\circ}C$$3.0^{\circ}C$ 이었다. 4. 안성시 외각에 위치한 도시농경지에서 폭염기간 동안벼 및 콩 군락과 대기의 온도 차이는 각각 평균 $2.6^{\circ}C$$2.2^{\circ}C$ 이었다. 5. 2012년 년 중 최고 폭염일 (8월 5일)의 수원시 중심지에 위치한 도시 정원 식물 체 잎 표면온도는 대기온도 대비 $2.0^{\circ}C$, 도시건물 외벽 대비 $14.5^{\circ}C$ 더 낮았다. 6. 수원시 중심지의 식물에 의한 도시열섬 저감효과를 전력량으로 비교하면 벼 5,250. 콩 2,200, 도시정원 식물 $1,000MW\;day^{-1}$ 이었다. 7. 수원시 중심지 폭염기의 작물 증발산량과 잠열에 의한 도시 열섬 현상 저감 효과를 원유의 양으로 비교하면, 벼 462.9, 콩 401.4 L원유 $10a^{-1}day^{-1}$ 이었다. 8. 수원시 중심지 폭염기의 작물에 의한 $CO_2$ 흡수량은, 벼 20.27, 콩 $15.54kg\;CO_2\;10a^{-1}day^{-1}$ 이었다. 9. 수원시 중심지 폭염기의 작물에 의한 $O_2$ 발생량은 벼 14.74, 콩 $11.30kg\;O_2\;10a^{-1}day^{-1}$ 이었다. 10. 수원시 중심지 폭염기의 작물에 의한 오존 농도 저감 효과는 벼 21.0, 콩 8.8 및 도시정원 식물 4.0 ppb 이었다.

Keywords

References

  1. Akbari, H. 2003. Measured energy savings from the application of reflective roofs in 2 small non-residential buildings. Energy. 28:953-967. https://doi.org/10.1016/S0360-5442(03)00032-X
  2. Akbari, H. 2002. Shade trees reduce building energy use and $CO_{2}$ emissions from power plants. Environ. Pollution. 116:S119-S126. https://doi.org/10.1016/S0269-7491(01)00264-0
  3. Akbari, H., M. Pomerantz, and H. Taha. 2001. Cool surface and shade trees to reduce eneragy use and improve air quality in urban areas. Solar Energe. 70(3):295-310. https://doi.org/10.1016/S0038-092X(00)00089-X
  4. Akbari, H., S. Bretz, D. Kurn, and J. Hanford. 1997. Peak power and cooling enerage savings of high-albedo roofs. Energy Buildings. 25:117-126. https://doi.org/10.1016/S0378-7788(96)01001-8
  5. Eom, K.C. 2011. Development of a system for integrated evaluation of the impact of climate change on agro-ecosystem. Research Report. RDA Agenda Project, RDA, Suwon. Korea. (In Korean)
  6. Eom, K.C. and S.H. Park. 2012. Water saving irrigation of house red pepper for the north region of Korea. Korean J. Soil Sci. Fert. 45(2):312-316. https://doi.org/10.7745/KJSSF.2012.45.2.312
  7. HAL. 2011. Urban heat islands mitigation. Guidance and Resources for Valley and Businesses, Local Government, and Residents 3-17.
  8. KEI. 2009. A study on strategies to mitigate urban heat island effects as part of climate change adaptation in urban areas. Research Report 1-32.
  9. Lim, J.N. 1988. Modeling of estimating soil moisture, evapotranspiration and yield of Chinese cabbages from meterological data at different growth stages. Korean J. Soil Sci. Fert. 21(4):386-408.
  10. NIAST. 1982-1996. Research Report. Soil and Fertilizer Management Division, National Academy of Agricultural Science, RDA, Suwon. Korea. (In Korean)
  11. Park, J.H. 2011. Global warning and heat island effect. Korean Nati. Comm. Irri. Drain. 9:20-28.
  12. Park, K.Y., S.W. Lee, J.K. Kim, and H.Y. Hwang. 2011. Analysis on the mitigation effect of urban heat island through water cycle construction. J. Korean Regi. Develop. Assoc. 6:118-130.
  13. Rosenfeld, A.H., J.J. Romm, H. Akbari, and M. Pomenrantz. 1998. Cool communities: strategies for heat islands mitigation and smog reduction. Energy Buildings. 28:51-62. https://doi.org/10.1016/S0378-7788(97)00063-7
  14. Taha, H., S. Konopacki, and S. Gabersek. 1996. Modeling the meteorological and energy effects of urban heat islands and their mitigation: A 10-Region Study. Lawrence Berkeley Laboratory Report LBL-38667, Berkeley, CA.

Cited by

  1. Projections of Future Summer Weather in Seoul and Their Impacts on Urban Agriculture vol.17, pp.2, 2015, https://doi.org/10.5532/KJAFM.2015.17.2.182