DOI QR코드

DOI QR Code

Preparation of Al2O3 Platelet/PMMA Composite and Its Mechanical/Therml Characterization

판상 Al2O3/PMMA 복합체 제조 및 기계적/열적 특성분석

  • Nam, Kyung Mok (Energy Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Yoon Joo (Energy Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kwon, Woo Teck (Energy Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Soo Ryong (Energy Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lim, Hyung Mi (Energy Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyungsun (School of Materials Engineering, Inha University) ;
  • Kim, Younghee (Energy Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 남경목 (한국세라믹기술원 에너지소재센터) ;
  • 이윤주 (한국세라믹기술원 에너지소재센터) ;
  • 권우택 (한국세라믹기술원 에너지소재센터) ;
  • 김수룡 (한국세라믹기술원 에너지소재센터) ;
  • 임형미 (한국세라믹기술원 에너지소재센터) ;
  • 김형순 (인하대학교 신소재공학부) ;
  • 김영희 (한국세라믹기술원 에너지소재센터)
  • Received : 2012.08.02
  • Accepted : 2012.09.12
  • Published : 2012.09.30

Abstract

Abalone shell is a high strength and light weighted ceramic composite material, which is composed of $CaCO_3$ platelet and protein. Microstructure of abalone shell has a matrix structure that is similar to the bricks and mortar. The technology inspired from nature which consumes low energy at low temperature is called bioinspired technology. In this study, to make high strength and light weighted ceramic composite materials using bioinspired technology, porous green body was prepared with $Al_2O_3$ platelet. PMMA was infiltrated into the porous green body, then warm pressed to eliminate pores present in the composite. The microstructure of the composite was observed with FESEM, and the mechanical/thermal properties were measured.

Keywords

References

  1. A. M. Belcher, X. H. Wu, R. J. Christensen, P.K. Hansma, G. D. Stucky, and D. E. Morse, "Control of Crystal Phase Switching and Orientation by Soluble Mollusc-shell Proteins", Nature, 381 56-8 (1996). https://doi.org/10.1038/381056a0
  2. M.E. Launey, E. Munch, D.H. Alsem, H.B. Barth, E. Saiz, A.P. Tomsia, and R.O. Ritchie, "Designing Highly Toughened Hybrid Composites Through Nature", Acta Materialia, 57 2919-32 (2009). https://doi.org/10.1016/j.actamat.2009.03.003
  3. E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia, and R.O. Ritchie, "Tough, Bio-Inspired Hybrid Materials", Science, 322 1516-20 (2008). https://doi.org/10.1126/science.1164865
  4. L.J. Bonderer, A.R. Studart, and L. J. Gauckler, "Bioinspired Design and Assembly of Platelet Reinforced Polymer Films", Science, 319 1069-73 (2008). https://doi.org/10.1126/science.1148726
  5. A. Chandra, L. S. Turng, K. Li, and H. X. Huang, "Fracture Behavior and Optical Properties of Melt Compounded Semitransparent Polycarbonate(PC)/Alumina Nanocomposites", Composites, Part A 42 1903-909 (2011). https://doi.org/10.1016/j.compositesa.2011.08.015
  6. S. Zhao, L. s. Schadler, R. Duncan, H. Hillborg, and T. Auletta, "Mechanisms Leading to Improved Mechanical Performance in Nanoscale Alumina Filled Epoxy", Comp. Sci. Tech., 68 2965-75 (2008). https://doi.org/10.1016/j.compscitech.2008.01.009
  7. H. Liu, H. Ye, T. Lin, and T. Zhou, "Synthesis and Characterization of PMMA/$Al_2O_3$ Composite Particles by in Situ Emulsion Polymerization", Particuology, 6 207-13 (2008) https://doi.org/10.1016/j.partic.2008.01.003
  8. X. Li, W.C. Chang, Y. J. Chao, R. Wang, and M. Chang "Nanoscale Structural and Mechanical Charaterization of a Natural Nanocomposite Material:the shell of red abalone", Nano Letters, 4 [4] 613-17 (2004). https://doi.org/10.1021/nl049962k
  9. D. Kumar, K. Shukla, S. V. Kasisomayajula, and V. Parameswaran, "EpoxY Composites using Functionalized Alumina Platelets as Reinforcements", Composite Science and Technology, 68 3055-63 (2008). https://doi.org/10.1016/j.compscitech.2008.06.025
  10. F. Bennadji-Gridi, A. Smith, and J.-p. Bonnet, "Montmorillonite Based Artificial Nacre Prepared Via Drying Process", Mat. Sci. Eng., 130 132-36 (2006). https://doi.org/10.1016/j.mseb.2006.02.063
  11. Y. L. Liu, C.Y. Hsu, and K. Y. Hsu, "Poly(methylmethacrylate)- silica Nanocomposites Films from Surface-functionalized Silica Nanoparticles", Polymer, 46 1851-56 (2005). https://doi.org/10.1016/j.polymer.2005.01.009
  12. B. J. Ash, D. F. Rogers, C. J. Wiegand, L. S. Schalder, R. W. Siegel, B. C. Benicewicz, and T. Apple, "Mechanical Properties of $Al_2O_3$/polymethylmethacrylate Nanocomposites", Polymer Comp., 23 [6] 1014-25 (2002). https://doi.org/10.1002/pc.10497

Cited by

  1. Effect of Additive Composition on Flexural Strength of Cullet-Loess Tile Bodies vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.416
  2. Particles and Electrophoretic Resin vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.460
  3. Bio-Inspired Synthesis of a Silicate/PMMA Composite vol.51, pp.1, 2014, https://doi.org/10.4191/kcers.2014.51.1.007
  4. Biomimetic Preparation of Boron Nitride /PMMA Composite vol.51, pp.2, 2014, https://doi.org/10.4191/kcers.2014.51.2.103
  5. Effect of Clay-Mineral Composition on Flexural Strength of Clay-based Membranes vol.51, pp.5, 2014, https://doi.org/10.4191/kcers.2014.51.5.380
  6. Asperities on the Surface of Plate-like Alumina and their Effect on Nacre-inspired Alumina-PMMA Composites vol.52, pp.4, 2015, https://doi.org/10.4191/kcers.2015.52.4.248
  7. Composition Dependence and Optical Properties of Polymethyl Methacrylate/Alumina Nanocomposite in the IR Region Determined by Kramers-Kronig Relation vol.54, pp.2, 2017, https://doi.org/10.4191/kcers.2017.54.2.01
  8. Eco‐Degradable and Flexible Solid‐State Ionic Conductors by Clay‐Nanoconfined DMSO Composites vol.4, pp.5, 2012, https://doi.org/10.1002/adsu.201900134