DOI QR코드

DOI QR Code

의료용 초음파탄성영상법

Medical Ultrasonic Elasticity Imaging Techniques

  • Jeong, Mok-Keun (Department of Electronics and Communications Engineering, Daejin University)
  • 투고 : 2012.08.30
  • 심사 : 2012.09.28
  • 발행 : 2012.10.30

초록

유방이나 전립선과 같은 연조직에서 발생하는 암이나 종양은 주위 조직보다 단단한 경향을 가진다. 하지만 초음파 B-mode 영상을 보면 암은 주위 조직과 거의 비슷하여 구별하기 어렵다. 따라서 조직의 단단한 정도를 영상화하면 더 정량적인 정보를 제공해 진단에 도움을 줄 수 있다. 초음파탄성영상은 측정하고자 하는 연조직에 기계적인 힘을 가하고 변형된 정도를 측정하여 영상화 한다. 탄성영상은 기존의 초음파 영상 진단기법과 더불어 종양을 진단하는 유용한 방법으로 자리매김하고 있다. 본 논문에서는 지금까지 발표된 다양한 탄성영상 방법을 분류하고 각 방법의 원리, 특성 등을 살펴본다.

Breast and prostate tumors or cancers tend to be stiffer than the surrounding normal tissue. However, the difference in echogenicity between cancerous and normal tissues is not clearly distinguishable in ultrasound B-mode imaging. Thus, imaging the stiffness contrast between the two different tissue types helps to diagnose lesions quantitatively, and such a method of imaging the elasticity of human tissue is termed ultrasound elasticity imaging. Recently, elasticity imaging has become an effective complementary diagnostic modality along with ultrasound B-mode imaging. This paper presents various elasticity imaging methods that have been reported up to now and describes their characteristics and principles of operation.

키워드

참고문헌

  1. A. Macovski, "Medical Imaging System," Prentice-Hall, (1983)
  2. T. Sato, Y. Yamakoshi and T. Nakamura, "Nonlinear tissue imaging," Proc. IEEE Ultrason. Symp., pp. 889-900 (1986)
  3. D. Yanwa, T. Jia and S. Yongchen, "Relations between the acoustic nonlinearity parameter and sound speed and tissue composition," Proc. IEEE Ultrason. Symp., pp. 931-934 (1987)
  4. P. He and A. McGoron, "Parameter estimation for nonlinear frequency dependent attenuation in soft tissue," Ultrasound Med. Biol., Vol. 15, No. 8, pp. 757-763 (1989) https://doi.org/10.1016/0301-5629(89)90116-6
  5. Y. Hayakawa, T. Wagai, K. Yosioka, T. Inada, T. Suzuki, H. Yagami and T. Fujii, "Measurement of ultrasound attenuation coefficient by a multifrequency echo technique-Theory and basic experiments," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 33, No. 6, pp. 759-764 (1986) https://doi.org/10.1109/T-UFFC.1986.26893
  6. F. Tranquart, N. Grenier, V. Eder and L. Pourcelot, "Clinical use of ultrasound tissue harmonic imaging," Ultrasound Med. Biol., Vol. 25, No. 6, pp. 889-894 (1999) https://doi.org/10.1016/S0301-5629(99)00060-5
  7. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra and T. Hall, "Elastic moduli of breast and prostate tissues under compression," Ultrason. Imaging, Vol. 20, pp. 260-274 (1998) https://doi.org/10.1177/016173469802000403
  8. J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, "Elastography: A quantitative method for imaging the elasticity of biological tissues," Ultrason. Imaging, Vol. 13, pp. 111-134 (1991) https://doi.org/10.1016/0161-7346(91)90079-W
  9. R. Y. Yoon, S. J. Kwon, M. H. Bae and M. K. Jeong, "Implementation of strain imaging modality in medical ultrasound imaging system," J. IEEK, Vol. 42, No. 3, pp. 157-166 (2005)
  10. M. K. Jeong, S. J. Kwon and M. H. Bae, "Real-time implementation of medical ultrasound strain imaging," J. Kor. Soc. Nondestructive Testing, Vol. 28, No. 2, pp. 101-111 (2008)
  11. D. K. Ahn and M. K. Jeong, "Ultrasonic phantom based on plastic material for elastography," J. Kor. Soc. Nondestructive Testing, Vol. 29, No. 4, pp. 368-373 (2009)
  12. M. O'Donnell, M. A. Lubinski and S. Y. Emelianov, "Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 46, No. 1, pp. 82-96, Jan. (1999) https://doi.org/10.1109/58.741427
  13. T. Shiina, N. Nitta, E. Ueno and J. C. Bamber, "Real time tissue elasticity imaging using the combined autocorrelation method," J. Med. Ultrason., Vol. 29, pp. 119-128 (2002) https://doi.org/10.1007/BF02481234
  14. A. Pesavento, C. Perrey, M. Krueger and H. Ermert, "A time-efficient and accurate strain estimation concept for ultrasonic elastography using iterative phase zero estimation," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 46, No. 5, pp. 1057-1067 (1999) https://doi.org/10.1109/58.796111
  15. D. K. Ahn, J. M. Park, S. J. Kwon and M. K. Jeong, "A study on the stiffness estimation in soft tissue using speckle brightness variance tracking," J. KOSOMBE, Vol. 24, No. 3, pp. 141-149 (2003)
  16. Y. Zhu, T. J. Hall and L. T. Cook, "Spatial resolution in elasticity imaging with ultrasound," Proc. IEEE Ultrason. Symp., pp. 1837-1840 (2000)
  17. T. Varghese and J. Ophir, "Enhancement of echo-signal correlation in elastography using temporal stretching," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 44, No. 1, pp. 173-180 (1997) https://doi.org/10.1109/58.585213
  18. S. J. Kwon and M. K. Jeong, "Contrast Improvement in Diagnostic Ultrasound Strain Imaging Using Globally Uniform Stretching," The Journal of the Acoustical Society of Korea, Vol. 29, No. 8, pp. 504-508 (2010)
  19. J. Ophir and I. Cespedes, "Reduction of image noise in elastography," Ultrason. Imaging, Vol. 15, pp. 89-102 (1993) https://doi.org/10.1006/uimg.1993.1008
  20. J. Ophir and F. Kallel, "A least-squares strain estimator for elastography," Ultrason. Imaging, Vol. 19, pp. 195-208 (1997) https://doi.org/10.1177/016173469701900303
  21. S. Kaisar Alam, J. Ophir and E. E. Konofagou, "An adaptive strain estimator for elastography," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 45, No. 2, pp. 461-472 (1998) https://doi.org/10.1109/58.660156
  22. J. E. Lindop, G. M. Treece, A. H. Gee and R. W. Prager, "Estimation of displacement location for enhanced strain imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 54, No. 9, pp. 1751-1771 (2007) https://doi.org/10.1109/TUFFC.2007.460
  23. F. Kallel, J. Ophir, K. Magee and T. Krouskop, "Elastographic imaging of low contrast elastic modulus distribution in tissue," Ultrasound Med. Biol., Vol. 24, No. 3, pp. 409-425 (1998) https://doi.org/10.1016/S0301-5629(97)00287-1
  24. M. K. Park, S. J. Kwon and M. K. Jeong, "Improvement of Medical Ultrasound Strain Image Using Lateral Motion Compensation," The Journal of the Acoustical Society of Korea, Vol. 30, No. 5, pp. 239-248 (2011) https://doi.org/10.7776/ASK.2011.30.5.239
  25. M. K. Jeong and S. J. Kwon, "Enhanced strain imaging using quality measure," J. Acoust. Soc. Korea, Vol. 27, No. 3E (2008)
  26. L. Sandrin, M. Tanter, S. Catheline, and M. Fink, "Shear modulus imaging with 2-D transient elastography," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 49, No. 4, pp. 426-435 (2002) https://doi.org/10.1109/58.996560
  27. K. J. Parker, L. Gao, S. K. Alam, D. Rubens and R. M. Lerner, "Sonoelasticity imaging: theory and applications," Proc IEEE Ultrason. Symp., pp. 623-628 (1996)
  28. L. S. Taylor, B. C. Porter, D. J. Rubens and K. J. Parker, "Three-dimensional sonoelastography: Principles and practices," Phys. Med. Biol., Vol. 45, pp. 1477-1494 (2000) https://doi.org/10.1088/0031-9155/45/6/306
  29. J. M. Park, S. J. Kwon and M. K. Jeong, "Wave generation and its effect on lesion detection in sonoelastography: Theory and simulation study," J. Acoust. Soc. Korea, Vol. 24, No. 5, pp. 282-293 (2005)
  30. K. R. Nightingale, M. L. Palmeri, R. W. Nightingale and G. E. Trahey, "On the feasibility of remote palpation using acoustic radiation force," J. Acoust. Soc. Am., Vol. 110, No. 1, pp. 625-634, July (2001) https://doi.org/10.1121/1.1378344
  31. K. Nightingale, M. S. Soo, R. Nightingale, E. Bentley and G. Trahey, "In vivo demonstration of acoustic radiation force impulse imaging in the thyroid, abdomen, and breast," Proc. IEEE Ultrason. Symp., pp. 1633-1638 (2001)
  32. K. Nightingale, M. S. Soo, R. Nightingale, R. Bentley, D. Stutz, M. Palmeri, J. Dahl and G. Trahey, "Acoustic radiation force impulse imaging: Remote palpation of the mechanical properties of tissue," Proc. IEEE Ultrason. Symp., pp. 1821-1830 (2002)
  33. B. J. Fahey, K. R. Nightingale, R. C. Nelson, M. L. Palmeri and G. E. Trahey, "Acoustic radiation force impulse imaging of the abdomen: Demonstration of feasibility and utility," Ultrasound Med. Biol., Vol. 31, No. 9, pp. 1185-1198 (2005) https://doi.org/10.1016/j.ultrasmedbio.2005.05.004
  34. M. L. Palmeri, A. C. Sharma, R. R. Bouchard, R. W. Nightingale and K. R. Nightingale, "A finite-element method model of soft tissue response to impulsive acoustic radiation force," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 52, No. 10, pp. 1699-1712 (2005) https://doi.org/10.1109/TUFFC.2005.1561624
  35. M. L. Palmeri, S. A. McAleavey, G. E. Trahey and K. R. Nightingale, "Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 53, No. 7, pp. 1300-1313, July (2006) https://doi.org/10.1109/TUFFC.2006.1665078
  36. B. J. Fahey, R. C. Nelson, S. J. Hsu, D. P. Bradway, D. M. Dumont and G. E. Trahey, "In vivo acoustic radiation force impulse imaging of abdominal lesions," Proc. IEEE Ultrason. Symp., pp. 440-443 (2007)
  37. J. M. Park, S. J. Kwon and M. K. Jeong, "Displacement Characteristics Generated in Viscous Tissue by an Acoustic Radiation Force," Sae Mulli (New Physics), Vol. 60, No. 12, pp. 1268-1281 (2010) https://doi.org/10.3938/NPSM.60.1268
  38. S. McAleavey, M. Menon and D. J. Rubens, "Acoustic radiation force impulse imaging of excised human prostates," Proc. IEEE Ultrason. Symp., pp. 1663-1666 (2000)
  39. A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes and S. Y. Emelianov, "Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics," Ultrasound Med. Biol., Vol. 24, No. 9, pp. 1419-1435 (1998) https://doi.org/10.1016/S0301-5629(98)00110-0
  40. R. S. Lazebnik, "Tissue strain analytics: Virtual touch tissue imaging and quantification," [Online]. Available: http://www.medical.siemens.com/siemens/sv_SE/gg_us_FBAs/files/misc_downloads/Whitepaper_VirtualTouch.pdf.
  41. J. Bercoff, M. Tanter and M. Fink, "Supersonic shear imaging: A new technique for soft tissue elasticity mapping," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 51, No. 4, pp. 396-409 (2004) https://doi.org/10.1109/TUFFC.2004.1295425
  42. M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J.-L. Gennisson, G. Montaldo, M. Muller, A. Tardivon and M. Fink, "Quantitative assessment of breast lesion viscoelasticity: Initial clinical results using supersonic shear imaging," Ultrasound Med. Biol., Vol. 34, No. 9, pp. 1373-1386 (2008) https://doi.org/10.1016/j.ultrasmedbio.2008.02.002
  43. J. Bercoff, A. Criton, C. C. Bacrie, J. Souquet, M. Tanter, J.-L. Gennisson, T. Deffieux and M. Fink, "Shear wave elastography," Proc. IEEE Ultrason. Symp., pp. 321-324 (2008)
  44. M. Fatemi and J. F. Greenleaf, "Ultrasoundstimulated vibro-acoustic spectrography," Science, Vol. 280, No. 3, pp. 82-85 (1998) https://doi.org/10.1126/science.280.5360.82
  45. M. Fatemi and J. F. Greenleaf, "Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound," Phys. Med. Biol., Vol. 45, pp. 1449-1464 (2000) https://doi.org/10.1088/0031-9155/45/6/304
  46. J. Greenleaf, M. Fatemi, G. Silva and M. Urban, "Vibro-acoustography: The most promising approaches and inferred needs for transducers and arrays," Proc. IEEE Ultrason. Symp., pp. 2322-2324 (2006)
  47. A. Alizad, D. H. Whaley, R. R. Kinnick, J. F. Greenleaf and M. Fatemi, "In vivo breast vibro-acoustography: Recent results and new challenges," Proc. IEEE Ultrason. Symp., pp. 1659-1662 (2006)
  48. A. Alizad, D. H. Whaley, J. F. Greenleaf and M. Fatemi, "Critical issues in breast imaging by vibro-acoustography," Ultrasonics, Vol. 44, pp. 217-220 (2006) https://doi.org/10.1016/j.ultras.2006.06.021
  49. S. Chen, M. W. Urban, C. Pislaru, R. Kinnick, Y. Zheng, A. Yao and J. F. Greenleaf, "Shearwave dispersion ultrasound vibrometry(SDUV) for measuring tissue elasticity and viscosity," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 56, No. 1 (2009)
  50. Matthew W. Urban, Shigao Chen and James F. Greenleaf, "Error in estimates of tissue material properties from shear wave dispersion ultrasound vibrometry," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 56, No. 4, (2009)
  51. N. Bom, S. G. Carlier, A. F. W. van der Steen and C. T. Lancee, "Intravascular scanners," Ultrasound Med. Biol., Vol. 26, Supplement 1, pp. s6-s9 (2000) https://doi.org/10.1016/S0301-5629(00)00151-4
  52. R. A. Meyer, "Intravascular ultrasound technological advances and clinical applications," Progress Pediatric Cardiology, Vol. 7, No. 3, pp. 141-153 (1997) https://doi.org/10.1016/S1058-9813(97)00019-2
  53. A. Gronningsaeter, B. A. J. Angelsen, A. Gresli and H. G. Torp, "Blood noise reduction in intravascular ultrasound imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 42, No. 2, pp. 200-209 (1995) https://doi.org/10.1109/58.365234
  54. C. L. de Korte and A. F. W. van der Steen, "Intravascular ultrasound elastography: An overview", Ultrasonics, Vol. 40, pp. 859-865 (2002) https://doi.org/10.1016/S0041-624X(02)00227-5
  55. D. K. Ahn and M. K. Jeong, "Blood Vessel Strain Imaging Using Linear Array Transducer," Journal of the Korea Academia-Industrial cooperation Society, Vol. 11, No. 3, pp. 880- 890 (2010) https://doi.org/10.5762/KAIS.2010.11.3.880
  56. C. Kasai, K. Namekawa, A. Koyano and R. Omoto, "Real-time two-dimensional blood flow imaging using an autocorrelation technique," IEEE Trans. Sonics Ultrason., Vol. SU-32, No. 3. pp. 485-464, May (1985)
  57. S. F Nagueh, K. J. Middleton, H. A. Kopelen, W. A Zoghbi and M. A Quinones, "Dopzpler tissue imaging: A noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures", J. Am. College Cardiology, Vol. 30, No. 6, pp. 1527-1533, Nov. (1997) https://doi.org/10.1016/S0735-1097(97)00344-6
  58. H. Kanai, H. Hasegawa, N. Chubachi, Y. Koiwa and M. Tanaka, "Noninvasive evalution of local myocardial thickening and its color-coded imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 44, No. 4, pp. 752-768 (1997) https://doi.org/10.1109/58.655190
  59. A. Heimdal, A Stoylen, H. Torp and T. Skjaepre, "Real-time strain rate imaging of the left ventricle by ultrasound," J. Am. Soc. Echocardiogr., Vol. 11, No. 11, pp. 1013- 1019 (1998) https://doi.org/10.1016/S0894-7317(98)70151-8
  60. J. D'hooge, A. Heimdal, F. Jamal, T. Kukulski, B. Bijnens, F. Rademakers, L. Hatle, P. Suetens and G. R. Sutherland, "Regional strain and strain rate measurements by cardiac ultrasound: Principles, implementation, and limitations," Eur. J. Echocardiogr., Vol. 1, No. 3, pp. 154-170 (2000) https://doi.org/10.1053/euje.2000.0031
  61. I. Mirsky and W. W. Parmley, "Assessment of passive elastic stiffness for isolated heart muscle and the intact heart," Circulation Res., Vol. 33, No. 2, pp. 233-243 (1973) https://doi.org/10.1161/01.RES.33.2.233
  62. L. N. Bohs and G. E. Trahey, "A novel method for angle independent ultrasonic imaging of blood flow and tissue motion," IEEE Trans. Biomed. Eng., Vol. 38, No. 3, pp. 280-286 (1991) https://doi.org/10.1109/10.133210
  63. M. Fink, L. Sandrin, M. Tanter, S. Catheline, S. Chaffai, J. Bercoff and J.-L. Gennisson. "Ultra high speed imaging of elasticity," Proc IEEE Ultrason. Symp., pp. 1811-1820 (2002)