DOI QR코드

DOI QR Code

골다공증 진단을 위한 초음파 변수의 골밀도에 대한 의존성

Dependences of Ultrasonic Parameters for Osteoporosis Diagnosis on Bone Mineral Density

  • 투고 : 2012.09.03
  • 심사 : 2012.10.12
  • 발행 : 2012.10.30

초록

현재 골다공증 진단을 위하여 임상에서 이용되고 있는 정량적 초음파 기술은 종골(발뒤꿈치뼈)에서 음속(speed of sound; SOS) 및 광대역 초음파 감쇠(normalized broadband ultrasound attenuation; nBUA)와 같은 초음파 변수를 측정한다. 본 연구에서는 소 대퇴골로부터 제작된 20개의 해면질골 샘플을 이용하여 골절 위험도가 높은 대퇴골에서 SOS 및 nBUA의 골밀도에 대한 의존성을 살펴보았다. 대퇴골 해면질골 샘플의 SOS 및 nBUA는 1.0 MHz의 중심주파수를 갖는 한 쌍의 초음파 트랜스듀서와 함께 투과법을 이용하여 측정 하였다. 20개의 해면질골 샘플에서 측정된 SOS 및 nBUA는 골밀도와 각각 r = 0.83 및 0.72라는 높은 Pearson 상관계수 (r)를 갖는 것으로 나타났다. 또한 SOS 및 nBUA를 독립변수로 하고, 골밀도를 종속변수로 하는 다중선형회귀분석으로부터 다중선형회귀모델의 상관계수는 r = 0.85로서 SOS 또는 nBUA 중 하나만을 독립변수로 하는 단순선형회귀모델의 상관계수보다 높게 나타났다. 이와 같이 초음파 변수와 골밀도 사이의 높은 선형적인 상관관계는 대퇴골에서 측정된 초음파 변수가 대퇴골의 골밀도를 예측하기에 충분한 지표라는 것을 의미한다.

Quantitative ultrasound technologies for osteoporosis diagnosis measure ultrasonic parameters such as speed of sound(SOS) and normalized broadband ultrasound attenuation(nBUA) in the calcaneus (heel bone). In the present study, the dependences of SOS and nBUA on bone mineral density in the proximal femur with high risk of fracture were investigated by using 20 trabecular bone samples extracted from bovine femurs. SOS and nBUA in the femoral trabecular bone samples were measured by using a transverse transmission method with one matched pair of ultrasonic transducers with a center frequency of 1.0 MHz. SOS and nBUA measured in the 20 trabecular bone samples exhibited high Pearson's correlation coefficients (r) of r = 0.83 and 0.72 with apparent bone density, respectively. The multiple regression analysis with SOS and nBUA as independent variables and apparent bone density as a dependent variable showed that the correlation coefficient r = 0.85 of the multiple linear regression model was higher than those of the simple linear regression model with either parameter SOS or nBUA as an independent variable. These high linear correlations between the ultrasonic parameters and the bone density suggest that the ultrasonic parameters measured in the femur can be useful for predicting the femoral bone mineral density.

키워드

참고문헌

  1. K. I. Lee and S. W. Woon, "Ultrasonic diagnosis of osteoporosis," J. Acoust. Soc. Kor., Vol. 29, No. 2E, pp. 64-72 (2010)
  2. World Health Organization. WHO Technical Report Series 843. Assessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis. Geneva, Switzerland, (1994)
  3. H. Y. Chung, "Osteoporosis Diagnosis and Treatment 2007", Journal of Korean Endocrine Society, Vol. 23, No. 2, pp. 76- 108 (2008) https://doi.org/10.3803/jkes.2008.23.2.76
  4. P. Laugier, "Age related decrements in bone mineral density in women over 65," J. Bone Miner. Res, Vol. 7, pp. 625-632 (1992)
  5. G. M. Black and I. Fogelman, "Bone densitometry and the diagnosis of osteoporosis," Seminars in Nuclear Med., Vol. 31, No. 1 pp. 69-81 (2001) https://doi.org/10.1053/snuc.2001.18749
  6. P. Laugier, "Instrumentation for in vivo ultrasonic characterization of bone strength," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 55, No. 6, pp. 1179-1196 (2008) https://doi.org/10.1109/TUFFC.2008.782
  7. C. M. Langton, S. B. Palmer and R. W. Porter, "The measurement of broadband ultrasonic attenuation in cancellous bone," Eng. Med., Vol. 13, No. 2, pp. 89-91 (1984) https://doi.org/10.1243/EMED_JOUR_1984_013_022_02
  8. Y.-L. Shin, "Assessment of Bone Mineral Density," J. Korean Soc. Pediatr. Endocrinol., Vol. 11, No. 2, pp. 123-130 (2006)
  9. K. A. Wear, S. Nagaraja and M. D. Dreher, "Relationships of quantitative ultrasound parameters with cancellous bone microstructure in human calcaneus in vitro," J. Acoust. Soc. Am., Vol. 131, No. 2, pp. 1605-1612 (2012) https://doi.org/10.1121/1.3672701
  10. S. I. Kim and K. I. Lee, "Dependencies of Group Velocity and Attenuation Coefficient on Structural Properties in Copper and Nickel Foams with an Open-Celled Structure as Trabecular-Bone-Mimicking Phantoms," The Journal of the Acoustical Society of Korea, Vol. 30, No, 3, pp. 158-166 (2011) https://doi.org/10.7776/ASK.2011.30.3.158
  11. C. M. Langton, C. F. Njeh, R. Hodgskinson and J. D. Currey, "Prediction of mechnical properties of the human calcaneus by broadband ultrasonic attenuation," Bone, Vol. 18, No. 6, pp. 495-503 (1996) https://doi.org/10.1016/8756-3282(96)00086-5
  12. K. I. Lee and M. J. Choi, "Correlations of Lumbar and Femoral Bone Mineral Densities with Calcaneal Speed of Sound in Osteoporotic Woman," Journal of the Acoustical Society of Korea, Vol. 28, No. 6, pp. 542-547 (2009)
  13. F. Padilla, F. Jenson, V. Bousson, F. Peyrin and P. Laugier, "Relationships of trabecular bone structure with quantitative ultrasound parameters: In vitro study on human proximal femur using transmission and backscatter measurements," Bone, Vol. 42, pp. 1193-1202 (2008) https://doi.org/10.1016/j.bone.2007.10.024
  14. R. Barkmann, S. Dencks, P. Laugier, F. Padilla, K. Brixen, J. Ryg, A. Seekamp, L. Mahlke, A. Bremer, M. Heller and C. C. Gluer, "Femur ultrasound(FemUS)-first clinical results on hip fracture discrimination and estimation of femoral BMD," Osteoporosis Int., Vol. 21, pp. 969-976 (2010) https://doi.org/10.1007/s00198-009-1037-4