DOI QR코드

DOI QR Code

초음파 탄성 영상 알고리듬

Algorithms for Ultrasound Elasticity Imaging

  • Kwon, Sung-Jae (Department of Communication Engineering, Daejin University)
  • 투고 : 2012.08.30
  • 심사 : 2012.10.06
  • 발행 : 2012.10.30

초록

초음파를 사용해 음속도, 감쇠 계수, 밀도, 비선형 B/A 파라미터 등을 측정하여 인체 조직의 특성을 정량적으로 영상화하고자 하는 연구가 1980년대부터 많이 진행되어 왔으나 아직 상용화 단계에는 도달하지 못했다. 하지만 1990년대 초에 시작된 탄성 영상법은 최근 들어 초음파 진단기에 상용화되어 임상에서 B-모드 영상법과 함께 전립선, 유방, 갑상선, 간, 혈관 등을 진단하기 위한 보완적이며 더 정량적인 모드로 사용되고 있는 단계에 진입하였다. 본고에서는 주로 준정적 또는 정적탄성 영상법에 사용되는 여러 가지 알고리듬을 소개하고 특성을 비교하고자 한다. 대부분의 알고리듬은 상호상관함수 또는 자기상관함수 방법에 그 기반을 두고 있으며 전자는 래그를 변화시켜가면서 시간 이동량을 찾지만 후자는 보간 과정 없이 고정된 래그에서의 위상차로부터 시간 이동량을 바로 구해 변위를 추정하는 점이다.

Since the 1980s, there have been many research activities devoted to quantitatively characterizing and imaging human tissues based on sound speed, attenuation coefficient, density, nonlinear B/A parameter, etc., but those efforts have not yet reached the stage of commercialization. However, a new imaging technology termed elastography, which was proposed in the early 1980s, has recently been implemented in commercial clinical ultrasound scanners, and is now being used to diagnose prostates, breasts, thyroids, livers, blood vessels, etc., more quantitatively as a complementary adjunct modality to the conventional B-mode imaging. The purpose of this article is to introduce and review various elastographic algorithms for use in quasistatic or static compression type elasticity imaging modes. Most of the algorithms are based on the crosscorrelation or autocorrelation function methods, and the fundamental difference is that the time shift is estimated by changing the lag variable in the former, while it is directly obtained from the phase shift at a fixed lag in the latter.

키워드

참고문헌

  1. T. Sato, Y. Yamakoshi and T. Nakamura, "Nonlinear tissue imaging," Proc. IEEE Ultrason. Symp., pp. 889-900 (1986)
  2. P. He and A. McGoron, "Parameter estimation for nonlinear frequency dependent attenuation in soft tissue," Ultrasound Med. Biol., Vol. 15, No. 8, pp. 757-763 (1989) https://doi.org/10.1016/0301-5629(89)90116-6
  3. Y. Labyed, T. A. Bigelow and B. L. McFarlin, "Estimate of the attenuation coefficient using a clinical array transducer for the detection of cervical ripening in human pregnancy," Ultrasonics, Vol. 51, No. 1, pp. 34-39 (2011) https://doi.org/10.1016/j.ultras.2010.05.005
  4. D. Yanwu, T. Jie and S. Yongchen, "Relations between the acoustic nonlinearity parameter and sound speed and tissue composition," Proc. IEEE Ultrason. Symp., pp. 931-934 (1987)
  5. Y. Yamakoshi, J. Sato and T. Sato, "Ultrasonic imaging of internal vibration of soft tissue under forced vibration," IEEE Trans. Ultrason. Ferroelec. Freq. Control, Vol. 37, No. 2, pp. 45-53 (1990) https://doi.org/10.1109/58.46969
  6. J. Ophir, E. I. Cespedes, H. Ponnekanti, Y. Yazdi and X. Li, "Elastography: A quantitative method for imaging the elasticity of biological tissues," Ultrason. Imaging, Vol. 13, No. 2, pp. 111-134 (1991) https://doi.org/10.1016/0161-7346(91)90079-W
  7. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra and T. Hall, "Elastic moduli of breast and prostate tissues under compression," Ultrason. Imaging, Vol. 30, No. 4, pp. 260-274 (1998)
  8. A. Lyshchik, T. Higashi, R. Asato, S. Tanaka, J. Ito, M. Hiraoka, A. B. Brill, T. Saga and K. Togashi, "Elastic moduli of thyroid tissues under compression," Ultrason. Imaging, Vol. 27, No. 2, pp. 101-110 (2005) https://doi.org/10.1177/016173460502700204
  9. K. J. Parker, L. S. Taylor, S. Gracewski and D. J. Rubens, "A unified view of imaging the elastic properties of tissue," J. Acoust. Soc. Am., Vol. 117, No. 5, pp. 2705-2712 (2005) https://doi.org/10.1121/1.1880772
  10. N. H. Gokhale, P. E. Barbone and A. A. Oberai, "Solution of the nonlinear elasticity imaging inverse problem: The compressible case," Inverse Problems, Vol. 24, No. 4, pp. 1-26 (2008)
  11. S. Goenezen, P. E. Barbone and A. A. Oberai, "Solution of the nonlinear elasticity imaging inverse problem: The incompressible case," Comput. Methods Appl. Mech. Engrg., Vol. 200, Nos. 13-16, pp. 1406-1420 (2011) https://doi.org/10.1016/j.cma.2010.12.018
  12. K. J. Parker, L. Gao, S. K. Alam, D. Rubens and R. M. Lerner, "Sonoelasticity imaging: Theory and applications," Proc. IEEE Ultrason. Symp., pp. 623-628 (1996)
  13. K. Nightingale, M. S. Soo, R. Nightingale and G. Trahey, "Acoustic radiation force impulse imaging: In vivo demonstration of clinical feasibility," Ultrasound Med. Biol., Vol. 28, No. 2, pp. 227-235 (2002) https://doi.org/10.1016/S0301-5629(01)00499-9
  14. A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes and S. Y. Emelianov, "Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics," Ultrasound Med. Biol., Vol. 24, No. 9, pp. 1419-1435 (1998) https://doi.org/10.1016/S0301-5629(98)00110-0
  15. A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes and S. Y. Emelianov, "Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics," Ultrasound Med. Biol., Vol. 24, No. 9, pp. 1419-1435 (1998) https://doi.org/10.1016/S0301-5629(98)00110-0
  16. R. Y. Yoon, D. G. Hyun, D. K. Shin, S. J. Kwon, M. H. Bae and M. K. Jeong, "Improved ultrasonic elasticity imaging with center frequency estimation and global shift compensation," Proc. IEEE Ultrason. Symp., pp. 1278-1281 (2006)
  17. R. Y. Yoon, S. J. Kwon, M. H. Bae and M. K. Jeong, "Implementation of strain imaging modality in medical ultrasonic imaging system," J. IEEK SC, Vol. 42, No. 3, pp. 53-62 (2005)
  18. M. K Jeong, S. J. Kwon and M. H. Bae, "Real-time implementation of medical ultrasound strain imaging system," J. Kor. Soc. Nondestructive Testing, Vol. 28, No. 2, pp. 101-111 (2008)
  19. T. Shiina, M. M. Doyley and J. C. Bamber, "Strain imaging using combined RF and envelope autocorrelation processing," Proc. IEEE Ultrason. Symp., pp. 1331-1336 (1996)
  20. T. Shiina, M. Yamakawa, N. Nitta and E. Ueno, "Real-time tissue elasticity imaging using the combined autocorrelation method," Hitachi MEDIX Suppl. (2007)
  21. D. Ohwada, Y. Okuyama and K. Kuroda, "Implementation of a combined autocorrelation method for real-time tissue elasticity imaging on FPGA," Proc. IEEE Computer Info. Conf., pp. 891-897 (2008)
  22. A. Pesavento and H. Ermert, "Time-efficient and exact algorithms for adaptive temporal stretching and 2D-correlation for elastographic imaging using phase information," Proc. IEEE Ultrason. Symp., pp. 1765-1768 (1998)
  23. A. Pesavento, A. Lorenz and H. Ermert, "Phase root seeking and the Cramer-Rao lower bound for strain estimation," Proc. IEEE Ultrason. Symp., pp. 1669-1672 (1999)
  24. A. Pesavento, C. Perrey, M. Krueger and H. Ermert, "A time-efficient and accurate strain estimation concept for ultrasonic elastography using iterative phase zero estimation," IEEE Trans. Ultrason. Ferroelec. Freq. Control, Vol. 46, No. 5, pp. 1057-1067 (1999) https://doi.org/10.1109/58.796111
  25. U. Bae and Y. Kim, "Direct phase-based strain estimator for ultrasound tissue elasticity imaging," Proc. IEEE EMBS Conf., pp. 1345-1348 (2004)
  26. U. Bae and Y. Kim, "Angular strain estimation method for elastography," IEEE Trans. Ultrason. Ferroelec. Freq. Control, Vol. 54, No. 12, pp. 2653-2661 (2007) https://doi.org/10.1109/TUFFC.2007.594
  27. I. Cespedes, Y. Huang, J. Ophir and S. Spratt, "Methods for estimation of subsample time delays of digitized echo signals," Ultrason. Imaging, Vol. 17, No. 2, pp. 142- 171 (1995) https://doi.org/10.1006/uimg.1995.1007
  28. F. Viola and W. F. Walker, "Comparison of time delay estimators in medical ultrasound," Proc. IEEE Ultrason. Symp., pp. 1485-1488 (2001)
  29. F. Viola and W. F. Walker, "A comparison of time-delay estimators in medical ultrasound," IEEE Trans. Ultrason. Ferroelec. Freq. Control, Vol. 50, No. 4, pp. 392-401 (2003) https://doi.org/10.1109/TUFFC.2003.1197962
  30. K. Hoyt, F. Forsberg and J. Ophir, "Comparison of shift estimation strategies in spectral elastography," Ultrasonics, Vol. 44, No. 1, pp. 99-108 (2006) https://doi.org/10.1016/j.ultras.2005.08.006
  31. H. Xie, T. Gauthier and A. T. Fernandez, "The role of local center frequency estimation in Doppler-based strain imaging," Proc. IEEE Ultrason. Symp., pp. 1965-1968 (2007)
  32. R. Kuc, "Generating a minimum-phase digital filter model for the acoustic attenuation of soft tissue," Proc. IEEE Ultrason. Symp., pp. 794-796 (1983)
  33. J. E. Lindop, G. M. Treece, A. H. Gee and R. W. Prager, "Phase-based ultrasonic deformation estimation," IEEE Trans. Ultrason. Ferroelec. Freq. Control, Vol. 55, No. 1, pp. 94-111 (2008) https://doi.org/10.1109/TUFFC.2008.620
  34. E. E. Konofagou, T. Varghese, J. Ophir and S. K. Alam, "Power spectral strain estimators in elastography," Ultrasound Med. Biol., Vol. 25, No. 7, pp. 1115-1129 (1999) https://doi.org/10.1016/S0301-5629(99)00061-7
  35. E. E. Konofagou, T. Varghese and J. Ophir, "Spectral estimators in elastography," Ultrasonics, Vol. 38, No. 3, pp. 412-416 (2000) https://doi.org/10.1016/S0041-624X(99)00116-X
  36. T. Varghese, E. E. Konofagou, J. Ophir, S. K. Alam and M. Bilgen, "Direct strain estimation in elastography using spectral cross-correlation," Ultrasound Med. Biol., Vol. 26, No. 9, pp. 1525-1537 (2000) https://doi.org/10.1016/S0301-5629(00)00316-1
  37. K. Hoyt, F. Forsberg and J. Ophir, "Investigation of parametric spectral estimation techniques for elasticity imaging," Ultrasound Med. Biol., Vol. 31, No. 8, pp. 1109-1121 (2005) https://doi.org/10.1016/j.ultrasmedbio.2005.04.013