References
- 강보미, 황현육, 김지훈, 양용운, 김영주, 2011, 호기성 미생물을 이용한 음폐수의 처리 및 자원화에 관한연구, 대한환경공학회지, 33(1), 54-59.
- 박진식, 안철우, 장성호, 2006, 유기물부하에 따른 음식 물찌꺼기의 산발효 특성, 한국환경과학회지, 15(10), 975-982.
- 안철우, 장성호, 박진식, 2006, 음식물찌꺼기 고온산발효 산물과 하수슬러지의 혼합처리, 한국환경과학회지, 15(9), 897-905.
- 허안희, 이은영, 김희준, 배재호, 2007, 운전조건의 변화가 음식물쓰레기 탈리액의 고온산발효에 미치는 영향, 대한환경공학회 2007 추계학술연구발표회 논문집, 430-438.
- 환경부, 2007, 음식물류 폐기물 처리시설 발생페수 육상처리 및 에너지화 종합대책(2008-2012).
- Bengtsson, S., Hallquist, J., Werker, A., Welander, T., 2008, Acidogenic fermentation of industrial wastewaters: Effects of chemostat retention time and pH on volatile fatty acids production, J. Biochem. Eng., 40, 492-499. https://doi.org/10.1016/j.bej.2008.02.004
- Bolzonella, D., Cavinato, C., Fatone, F., Pavan, P., Cecchi, F., 2012, High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: A pilot scale study, Waste Management, In Press.
- Feng, L., Chen, Y., Zheng, X., 2009, Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH, Environ. sci. and technol., 43, 4373-4380. https://doi.org/10.1021/es8037142
- Horiuchi, J. I., Shimizu, T., Tada, K., Kanno, T., Kobayashi, M., 2002, Selective production of organic acids in anaerobic acid reactor by pH control, Bioresour. Technol., 82, 209-213. https://doi.org/10.1016/S0960-8524(01)00195-X
- Kim, J., Oh, B., Chun, Y., Kim, S., 2006, Effects of temperature and hydraulic retention time on anaerobic digestion of food waste, J. Biosci. and bioeng., 102(4), 328-332. https://doi.org/10.1263/jbb.102.328
- Lim, S., Kim, B., Choi, J., Ahn, Y., Chang, H., 2008, Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor, Bioresour. Technol., 99, 7866-7874. https://doi.org/10.1016/j.biortech.2007.06.028
- Muyzer, G., Dewaal, E., Uitterlinden, A., 1993, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16s rRNA, Appl. Environ. Microbiol., 59, 695- 700.
- Pratap, C., Chynoweth, D., Gerasimos, L., Spyros, A., 2005, Stable performance of anaerobic digestion in the presence of a high concentration of propionic acid, Bioresour. Technol., 78(2), 165-169.
- Shin, J., Youn, J., 2005, Conversion of food waste into hydrogen by thermophilic acidogenesis, Biodegradation, 16, 33-44. https://doi.org/10.1007/s10531-004-0377-9
-
Visser, A., Gao, Y., Lettinga, G., 1993, Effects of pH on methanogenesis and sulphate reduction in thermophilic (
$55{^{\circ}C}$ ) UASB reactors, Bioresour. Technol., 44(2), 113-121. https://doi.org/10.1016/0960-8524(93)90184-D - Wang, G., Mu, Y., Yu, H., 2005, Response surface analysis to evaluate the influence of pH, temperature and substrate concentration on the acidogenesis of sucrose-rich wastewater, Biochem. Eng. J., 23(2), 175-184. https://doi.org/10.1016/j.bej.2005.01.002
- Liu, W., Chan, O., Fang, H., 2002, Microbial community dynamics during start-up of acidogenic anaerobic reactors, Water Res., 36(12), 3203-3210. https://doi.org/10.1016/S0043-1354(02)00022-2
- Yu, H., Fang, H., Gu, G., 2002, Comparative performance of mesophilic and thermophilic acidogenic upflow reactors. Process Biochem., 38, 447-454. https://doi.org/10.1016/S0032-9592(02)00161-9