DOI QR코드

DOI QR Code

산소 분위기에서 열처리시 ZnS 나노선의 발광 강도 변화

Enhancement of Photoluminescence Intensity of ZnS Nanowires by Annealing in O2

  • 권진업 (한국폴리텍대학 인천캠퍼스 신소재응용학과) ;
  • 이종우 (한국폴리텍대학 인천캠퍼스 신소재응용학과)
  • Kwon, Jin-Up (Dept. of Advanced Material Eng., Incheon Campus Korea Polytechnicll College) ;
  • Lee, Jong-Woo (Dept. of Advanced Material Eng., Incheon Campus Korea Polytechnicll College)
  • 투고 : 2012.09.01
  • 심사 : 2012.10.30
  • 발행 : 2012.10.31

초록

The influence of annealing process in an $O_2$ atmosphere on the photoluminescence (PL) spectra properties of ZnS nanowires has been investigated. ZnS nanowires with the diameters approximately 100 nm and the lengths a few tens micrometers were synthesized by evaporating ZnS powders on Si substrates while using an Au thin film as a catalyst. ZnS nanowires had an NBE emission band at 430 nm in the violet region. The emission intensity was improved drastically by a process in which ZnS nanowires were heat-treated at $500^{\circ}C$ in an $O_2$ atmosphere for 45 minutes.

키워드

참고문헌

  1. T. V. Prevenslik, J. Lumin., 1210 (2000) 87.
  2. T. Yamamoto, S. Kishimoto, S. Lida, Physica B, 308 (2001) 916. https://doi.org/10.1016/S0921-4526(01)00842-0
  3. S. Biswas, T. Ghoshal, S. Kar, S. Chakrabarti, S. Chaudhuri, Cryst. Growth Des., 8 (2008) 2171. https://doi.org/10.1021/cg800071g
  4. Y. Yu, J. Xiang, C. Yang, W. Lu, C. M. Lieber, Nature, 450 (2004) 61.
  5. L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, Nature, 420 (2002) 57. https://doi.org/10.1038/nature01141
  6. Y. Chang, M. Wang, X. Chen, S. Ni, W. Qiang, Solid State Comm., 142 (2007) 295. https://doi.org/10.1016/j.ssc.2007.02.019
  7. J. Zhang, Y. Yang, F. Jiang, J. Li, B. Xu, X. Wang, S. Wang, Nanotechnology, 17 (2006) 2695. https://doi.org/10.1088/0957-4484/17/10/042
  8. W. G. Becker, A. J. Bard, J. Phys. Chem., 87 (1983) 4888. https://doi.org/10.1021/j150642a026
  9. S. Shionoya, Luminescence of Inorganic Solids, P. Goldberg(Eds.), Academic, New York (1966) 206.
  10. A. A. Bol, A. Meijerink, J. Phys. Chem. B, 105 (2001) 10203 https://doi.org/10.1021/jp010757s
  11. P. Hu, Y. Liu, L. Fu, L. Cao, D. Zhu, J. Phys. Chem. B, 108 (2004) 936.
  12. D. Denzler, M. Olschewski, K. Sattler, J. Appl. Phys., 84 (1998) 2841. https://doi.org/10.1063/1.368425
  13. Y. C. Zhu, Y. Bando, D. F. Xue, Appl. Phys. Lett., 82 (2003) 1769. https://doi.org/10.1063/1.1562339
  14. Y. W. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, X. S. Peng, Chem. Phys. Lett., 357 (2002) 314. https://doi.org/10.1016/S0009-2614(02)00530-4
  15. P. H. Kasai, Y. Otomo, J. Phys. Chem., 87 (1962) 4888.
  16. Y. Jiang, X. M. Meng, J. Liu, Z. Y. Xie, C. S. Lee, S. T. Lee, Adv. Mater., 15 (2003) 323. https://doi.org/10.1002/adma.200390079
  17. Y. Jiang, X. M. Meng, J. Liu, Z. R. Hong, C. S. Lee, S. T. Lee, Adv. Mater., 15 (2003) 1195. https://doi.org/10.1002/adma.200304852
  18. S. T. Henderson, P. W. Ranby, M. B. Halstead, J. Electrochem. Soc., 106 (1959) 27. https://doi.org/10.1149/1.2427258
  19. T. Hoshina, H. Kawai, Jpn. J. Appl. Phys., 19 (1980) 267. https://doi.org/10.1143/JJAP.19.267
  20. N. R. J. Poolton, J. Phys. C, 20 (1987) 5867. https://doi.org/10.1088/0022-3719/20/34/020
  21. Q. Li, C. Wang, Appl. Phys. Lett., 83 (2003) 359. https://doi.org/10.1063/1.1591999
  22. Y. Wang, L. Zhang, C. Liang, G. Wang, X. Peng, Chem. Phys. Lett., 357 (2002) 314. https://doi.org/10.1016/S0009-2614(02)00530-4
  23. Q. Xiong, G. Chen, J. D. Acord, X. Liu, J. J. Zengei, H. R. Gutierrez, J. M. Redwing, L. C. Lew Yan Voon, B. Lassen, P. C. Eklund, Nano. Lett., 4 (2004) 1663. https://doi.org/10.1021/nl049169r
  24. R. A. Rosenberg, G. K. Shenoy, F. Heigl, S. T. Lee, P. S. G. Kim, X. T. Zhou, T. K. Sham, Appl. Phys. Lett., 86 (2005) 263115. https://doi.org/10.1063/1.1984096