DOI QR코드

DOI QR Code

Anti-Fibrotic Effects by Moringa Root Extract in Rat Kidney Fibroblast

모링가 뿌리 추출물에 대한 신장섬유화 억제 효과

  • Park, Su-Hyun (Research Institute of Biomedical Engineering, Catholic University of Daegu School of Medicine) ;
  • Chang, Young-Chae (Research Institute of Biomedical Engineering, Catholic University of Daegu School of Medicine)
  • 박수현 (대구가톨릭대학교 의용생체공학연구소) ;
  • 장영채 (대구가톨릭대학교 의용생체공학연구소)
  • Received : 2012.08.13
  • Accepted : 2012.10.05
  • Published : 2012.10.30

Abstract

Fibrosis in kidney by internal and external factors causes progressive loss of renal function. Renal fibrosis is the inevitable consequence of an excessive accumulation of the extracellular matrix. TGF-${\beta}$ plays an important role in the process of renal fibrosis and stimulates the synthesis of profibrotic factors, including collagens, fibronectin, and plasminogen activator inhibitor (PAI-1). We examined the effect of Moringa oleifera Lam (moringa) extracts in a rat kidney fibrosis model. We found that moringa root extract suppresses protein expression/mRNA levels of Type I collagen, fibronectin, and PAI-1 induced by TGF-${\beta}$ in renal fibroblasts. Moringa root extract selectively inhibited phosphorylation of TGF-${\beta}$-induced $T{\beta}RII$ and the downstream signaling pathway (e.g., Smad4), and phospho-ERK, but not JNK, p38, or PI3K/AKT. These results suggest that moringa root extract can act against TGF-${\beta}$-induced renal fibrosis in rat kidney fibroblast cells by a mechanism related to its antifibrotic activity, which regulates expression of fibronectin, Type I collagen, and PAI-1 through $T{\beta}RII$-Smad2/3-Smad4 and ERK. Therefore, moringa root extract is an effective substance for fibrosis therapy and provides a new therapeutic strategy for diseases associated with elevated profibrotic factor synthesis.

신장섬유화는 내 외부적인 요인들에 의해 발생하며, 그 요인들에 의해 염증이 생기고 지속적인 손상이 일어날 경우 신기능의 상실이 유발된다. 또한 신장섬유화는 세포 외 기질의 과다축적, TGF-${\beta}$나, TNF-${\alpha}$, IL-1과 같은 사이 토카인에 의해 발생하며, TGF-${\beta}$는 신장 섬유화의 과정과 Type I collagen과 fibronectin, PAI-1을 포함한 섬유화 관련 인자들의 발현 유도에 중요한 역할을 한다. 본 연구에서는 TGF-${\beta}$를 처리한 신장섬유화 유도 모델에서 Moringa oleifera Lam 추출물에 대한 섬유화 관련 인자들의 영향을 확인하였다. 실험 결과 TGF-${\beta}$로 유도된 신장 섬유화 세포에서 모링가 추출물이 fibronectin, Type I collagen과 PAI-1의 단백질 및 mRNA 발현을 저해하였으며, 모링가 추출물 중 모링가 뿌리추출물이 가장 영향이 있는 것으로 확인 되었다. 모링가 뿌리추출물이 어떠한 기전을 통하여 섬유화 관련 인자들의 발현을 조절하는지 알아보기 위한 TGF-${\beta}$로 유도된 $T{\beta}RII$ 및 그 하위 기전의 인산화 정도를 확인한 실험에서 모링가 뿌리추출물이 TGF-${\beta}$로 유도된 $T{\beta}RII$과 그 하위기전의 Smad4, ERK의 인산화를 저해하였다. 그러나 TGF-${\beta}$에 의해 유도된 JNK와 p38, PI3K/AKT의 인산화에는 영향이 없었다. 따라서 모링가 뿌리추출물이 TGF-${\beta}$로 유도된 신장 섬유아세포에서 $T{\beta}RII$와 그 하위 기전인 Smad4, ERK를 통해서 Type I collagen 과 fibronectin, PAI-1의 발현을 조절하여 섬유화를 저해 한다는 것을 예상할 수 있다. 결론적으로 모링가 뿌리추출물이 섬유화 치료 및 완화에 좋은 물질이 될 수 있을 것으로 생각된다.

Keywords

References

  1. Anwar, F., Latif, S., Ashraf, M. and Gilani, A. H. 2007. Moringa oleifera: a food plant with multiple medicinal uses. Phytother. Res. 21, 17-25. https://doi.org/10.1002/ptr.2023
  2. Attisano, L, and Wrana, J. L. 2002. Signal transduction by the TGF-beta superfamily. Science 296, 1646-1647. https://doi.org/10.1126/science.1071809
  3. Bharali, R., Tabassum, J. and Azad, M. R. 2003. Chemomodulatory effect of Moringa oleifera, Lam, on hepatic carcinogen metabolising enzymes, antioxidant parameters and skin papillomagenesis in mice. Asian Pac. J. Cancer Prev. 4, 131-139.
  4. Bhogal, R. K. and Bona, C. A. 2008. Regulatory effect of extracellular signal-regulated kinases (ERK) on type I collagen synthesis in human dermal fibroblasts stimulated by IL-4 and IL-13. Int. Rev. Immunol. 27, 472-496. https://doi.org/10.1080/08830180802430974
  5. Border, W. A. and Noble, N. A. 1994. Transforming growth factor beta in tissue fibrosis. N. Engl. J. Med. 331, 1286-1292. https://doi.org/10.1056/NEJM199411103311907
  6. Border, W. A. and Noble, N. A. 1997. TGF-beta in kidney fibrosis: a target for gene therapy. Kidney Int. 51, 1388-1396. https://doi.org/10.1038/ki.1997.190
  7. Cho, H. J., Kang, J. H., Kim, T., Park, K. K., Kim, C. H., Lee, I. S., Min, K. S., Magae, J., Nakajima, H., Bae, Y. S. and Chang, Y. C. 2009. Suppression of PAI-1 expression through inhibition of the EGFR-mediated signaling cascade in rat kidney fibroblast by ascofuranone. J. Cell. Biochem. 107, 335-344. https://doi.org/10.1002/jcb.22130
  8. Eddy, A. A. 2009. Serine proteases, inhibitors and receptors in renal fibrosis. Thromb. Haemost. 101, 656-664.
  9. Eitzman, D. T. and Ginsburg, D. 1997. Of mice and men. The function of plasminogen activator inhibitors (PAIs) in vivo. Adv. Exp. Med. Biol. 425, 131-141. https://doi.org/10.1007/978-1-4615-5391-5_13
  10. Gaedeke, J., Noble, N. A. and Border, W. A. 2004. Curcumin blocks multiple sites of the TGF-beta signaling cascade in renal cells. Kidney Int. 66, 112-120. https://doi.org/10.1111/j.1523-1755.2004.00713.x
  11. Guevara, A. P., Vargas C., Sakurai, H., Fujiwara, Y., Hashimoto, K., Maoka, T., Kozuka, M., Ito Y., Tokuda, H. and Nishino, H. 1999. An antitumor promoter from Moringa oleifera Lam. Mutat. Res. 440, 181-188. https://doi.org/10.1016/S1383-5718(99)00025-X
  12. Guo, B., Inoki, K., Isono, M., Mori, H., Kanasaki, K., Sugimoto, T., Akiba, S., Sato, T., Yang, B., Kikkawa, R., Kashiwagi, A., Haneda, M. and Koya, D. 2005. MAPK/AP-1-dependent regulation of PAI-1 gene expression by TGF-beta in rat mesangial cells. Kidney Int. 68, 972-984. https://doi.org/10.1111/j.1523-1755.2005.00491.x
  13. Hamza, A. A. Ameliorative effects of Moringa oleifera Lam seed extract on liver fibrosis in rats. Food Chem. Toxicol. 48, 345-355.
  14. Hayashi, H., Abdollah, S., Qiu, Y., Cai, J., Xu, Y. Y., Grinnell, B. W., Richardson, M. A., Topper, J. N., Gimbrone, M. A., Jr., Wrana, J. L. and Falb, D. 1997. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 89, 1165-1173. https://doi.org/10.1016/S0092-8674(00)80303-7
  15. Heldin, C. H., Miyazono, K. and ten Dijke, P. 1997. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465-471. https://doi.org/10.1038/37284
  16. Hocevar, B. A., Brown, T. L. and Howe, P. H. 1999. TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J. 18, 1345-1356. https://doi.org/10.1093/emboj/18.5.1345
  17. Hynes, R. 1985. Molecular biology of fibronectin. Annu. Rev. Cell Biol. 1, 67-90. https://doi.org/10.1146/annurev.cb.01.110185.000435
  18. Imamura, T., Takase, M., Nishihara, A., Oeda, E., Hanai, J., Kawabata, M. and Miyazono, K. 1997. Smad6 inhibits signalling by the TGF-beta superfamily. Nature 389, 622-626. https://doi.org/10.1038/39355
  19. Kohan, M., Muro, A. F., White, E. S. and Berkman, N. EDA-containing cellular fibronectin induces fibroblast differentiation through binding to alpha4beta7 integrin receptor and MAPK/Erk 1/2-dependent signaling. FASEB J. 24, 4503-4512.
  20. Kornblihtt, A. R., Pesce, C. G., Alonso, C. R., Cramer, P., Srebrow, A., Werbajh, S. and Muro, A. F. 1996. The fibronectin gene as a model for splicing and transcription studies. FASEB J. 10, 248-257.
  21. Kutz, S. M., Hordines, J., McKeown-Longo, P. J. and Higgins, P. J. 2001. TGF-beta1-induced PAI-1 gene expression requires MEK activity and cell-to-substrate adhesion. J. Cell. Sci. 114, 3905-3914.
  22. Leask, A. and Abraham, D. J. 2004. TGF-beta signaling and the fibrotic response. FASEB J. 18, 816-827. https://doi.org/10.1096/fj.03-1273rev
  23. Lebrun, J. J., Takabe, K., Chen, Y. and Vale, W. 1999. Roles of pathway-specific and inhibitory Smads in activin receptor signaling. Mol. Endocrinol. 13, 15-23. https://doi.org/10.1210/me.13.1.15
  24. Liu, Y. 2006. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int. 69, 213-217. https://doi.org/10.1038/sj.ki.5000054
  25. Lu, Y., Azad, N., Wang, L., Iyer, A. K., Castranova, V., Jiang, B. H. and Rojanasakul, Y. Phosphatidylinositol-3-kinase/akt regulates bleomycin-induced fibroblast proliferation and collagen production. Am. J. Respir. Cell. Mol. Biol. 42, 432-441.
  26. Lund, L. R., Riccio, A., Andreasen, P. A., Nielsen, L. S., Kristensen, P., Laiho, M., Saksela, O., Blasi, F. and Dano, K. 1987. Transforming growth factor-beta is a strong and fast acting positive regulator of the level of type-1 plasminogen activator inhibitor mRNA in WI-38 human lung fibroblasts. EMBO J. 6, 1281-1286.
  27. Ma, F. Y., Tesch, G. H., Ozols, E., Xie, M., Schneider, M. D. and Nikolic-Paterson, D. J. TGF-{beta}1 activated kinase-1 (TAK1) regulates inflammation and fibrosis in the obstructed kidney. Am. J. Physiol. Renal Physiol. 6, 1410-1421.
  28. Mahajan, S. G. and Mehta, A. A. 2008. Effect of Moringa oleifera Lam. seed extract on ovalbumin-induced airway inflammation in guinea pigs. Inhal. Toxicol. 20, 897-909. https://doi.org/10.1080/08958370802027443
  29. Meulders, Q., He, C. J., Adida, C., Peraldi, M. N., Schleuning, W. D., Sraer, J. D. and Rondeau, E. 1992. Tumor necrosis factor alpha increases antifibrinolytic activity of cultured human mesangial cells. Kidney Int. 42, 327-334. https://doi.org/10.1038/ki.1992.293
  30. Nakagawa, T., Lan, H. Y., Glushakova, O., Zhu, H. J., Kang, D. H., Schreiner, G. F., Bottinger, E. P., Johnson, R. J. and Sautin, Y. Y. 2005. Role of ERK1/2 and p38 mitogen- activated protein kinases in the regulation of thrombospondin- 1 by TGF-beta1 in rat proximal tubular cells and mouse fibroblasts. J. Am. Soc. Nephrol. 16, 899-904. https://doi.org/10.1681/ASN.2004080689
  31. Nakao, A., Afrakhte, M., Moren, A., Nakayama, T., Christian, J. L., Heuchel, R., Itoh S., Kawabata, M., Heldin, N. E., Heldin, C. H. and ten Dijke, P. 1997. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 389, 631-635. https://doi.org/10.1038/39369
  32. Ponticos, M., Holmes, A. M., Shi-wen, X., Leoni, P., Khan, K., Rajkumar, V. S., Hoyles, R. K., Bou-Gharios, G., Black, C. M., Denton, C. P., Abraham, D. J., Leask, A. and Lindahl, G. E. 2009. Pivotal role of connective tissue growth factor in lung fibrosis: MAPK-dependent transcriptional activation of type I collagen. Arthritis Rheum. 60, 2142-2155. https://doi.org/10.1002/art.24620
  33. Rerolle, J. P., Hertig, A., Nguyen, G., Sraer, J. D. and Rondeau, E. P. 2000. Plasminogen activator inhibitor type 1 is a potential target in renal fibrogenesis. Kidney Int. 58, 1841-1850. https://doi.org/10.1111/j.1523-1755.2000.00355.x
  34. Samarakoon, R., Higgins, S. P., Higgins, C. E. and Higgins, P. J. 2008. TGF-beta1-induced plasminogen activator inhibitor- 1 expression in vascular smooth muscle cells requires pp60(c-src)/EGFR(Y845) and Rho/ROCK signaling. J. Mol. Cell Cardiol. 44, 527-538. https://doi.org/10.1016/j.yjmcc.2007.12.006
  35. Shi, Y., Hata, A., Lo, R. S., Massague, J. and Pavletich, N. P. 1997. A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature 388, 87-93. https://doi.org/10.1038/40431
  36. Siddhuraju, P. and Becker, K. 2003. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food Chem. 51, 2144-2155. https://doi.org/10.1021/jf020444+
  37. Souchelnytskyi, S., Nakayama, T., Nakao, A., Moren, A., Heldin, C. H., Christian, J. L. and Ten Dijke, P. 1998. Physical and functional interaction of murine and Xenopus Smad7 with bone morphogenetic protein receptors and transforming growth factor-beta receptors. J. Biol. Chem. 273, 25364-25370. https://doi.org/10.1074/jbc.273.39.25364
  38. Sreelatha, S., Jeyachitra, A. and Padma, P. R. Antiproliferation and Induction of Apoptosis by Moringa oleifera leaf extract on Human Cancer cells. Food Chem. Toxicol. 6, 1270-1275.
  39. Verrecchia, F. and Mauviel, A. 2004. TGF-beta and TNF-alpha: antagonistic cytokines controlling type I collagen gene expression. Cell Signal. 16, 873-880. https://doi.org/10.1016/j.cellsig.2004.02.007
  40. Wilson, H. M., Reid, F. J., Brown, P. A., Power, D. A., Haites, N. E. and Booth, N. A. 1993. Effect of transforming growth factor-beta 1 on plasminogen activators and plasminogen activator inhibitor-1 in renal glomerular cells. Exp. Nephrol. 1, 343-350.
  41. Yue, J. and Mulder, K. M. 2000. Activation of the mitogen- activated protein kinase pathway by transforming growth factor-beta. Methods Mol. Biol. 142, 125-131.
  42. Zhu, B., Wang, Y. J., Zhu, C. F., Lin, Y., Zhu, X. L., Wei, S., Lu, Y. and Cheng, X. X. Triptolide inhibits extracellular matrix protein synthesis by suppressing the Smad2 but not the MAPK pathway in TGF-beta1-stimulated NRK-49F cells. Nephrol. Dial. Transplant 25, 3180-3191.

Cited by

  1. Anti-Diabetic, Alcohol-Metabolizing, and Hepatoprotective Activities of Moringa (Moringa oleifera Lam.) Leaf Extracts vol.45, pp.6, 2016, https://doi.org/10.3746/jkfn.2016.45.6.819
  2. Effect ofMoringa oleiferaLeaf on Antioxidant and Quality Characteristics of the Korean Traditional Rice Cake Sulgidduk vol.41, pp.2, 2017, https://doi.org/10.1111/jfpp.12820
  3. Antioxidation, Physicochemical, and Sensory Characteristics of Sulgidduck Fortified with Water Extracts from Moringa oleifera Leaf vol.31, pp.3, 2015, https://doi.org/10.9724/kfcs.2015.31.3.335
  4. Quality Characteristics of Muffins Added with Moringa (Moringa oleifera Lam.) Leaf Powder vol.45, pp.6, 2016, https://doi.org/10.3746/jkfn.2016.45.6.872