DOI QR코드

DOI QR Code

Effects of Organic Acids on In Vitro Ruminal Fermentation Characteristics and Methane Emission

Organic acids 의 첨가가 in vitro 반추위 발효성상과 메탄 생성에 미치는 영향

  • Ok, Ji Un (Animal Nutrition Team, National Institute of Animal Science, RDA) ;
  • Ha, Dong Uk (Division of Applied Life Science (BK21 program) & Institute of Agriculture and Life Science (IALS), Gyeongsang National University) ;
  • Lee, Shin Ja (Department of Animal Science, Gyeongbuk Provincial Collage) ;
  • Kim, Eun Tae (Division of Applied Life Science (BK21 program) & Institute of Agriculture and Life Science (IALS), Gyeongsang National University) ;
  • Lee, Sang Suk (Department of Animal Science & Biotechnology, Suncheon National University) ;
  • Oh, Young Kyun (Animal Nutrition Team, National Institute of Animal Science, RDA) ;
  • Kim, Kyoung Hoon (Animal Nutrition Team, National Institute of Animal Science, RDA) ;
  • Lee, Sung Sill (Division of Applied Life Science (BK21 program) & Institute of Agriculture and Life Science (IALS), Gyeongsang National University)
  • 옥지운 (농촌진흥청 국립축산과학원 영양생리팀) ;
  • 하동욱 (경상대학교 응용생명과학부(BK21 program) & 농업생명과학연구원) ;
  • 이신자 (경북도립대학 축산과) ;
  • 김언태 (경상대학교 응용생명과학부(BK21 program) & 농업생명과학연구원) ;
  • 이상석 (순천대학교 동물자원학과) ;
  • 오영균 (농촌진흥청 국립축산과학원 영양생리팀) ;
  • 김경훈 (농촌진흥청 국립축산과학원 영양생리팀) ;
  • 이성실 (경상대학교 응용생명과학부(BK21 program) & 농업생명과학연구원)
  • Received : 2012.06.01
  • Accepted : 2012.08.07
  • Published : 2012.10.30

Abstract

The objective of this study was to evaluate the in vitro effects of organic acids on methane emission and ruminal fermentation characteristics. We expected our methodology to result in a decrease of methanogens attached to the surface of rumen ciliate protozoa by addition of organic acids and in particular a decrease in methane emission. A fistulated Holstein cow of 650 kg body weight was used as a donor of rumen fluid. Organic acids (aspartic acid, fumaric acid, lactic acid, malic acid, and succinic acid) known to be propionate enhancers were added to an in vitro fermentation system and incubated with rumen fluid. The microbial population, including bacteria, protozoa, and fungi, were enumerated, and gas production, including methane and fermentation characteristics, were observed in vitro. Organic acids appeared to affect the rumen protozoan community. The rumen protozoal popuation decreased with the addition of aspartic acid, fumaric acid, lactic acid, and malic acid. In particular, the methane emission was reduced by addition of lactic acid. The concentration of propionate with all organic acids that were added appeared to be higher than that of the control at 12 h incubation. Addition of organic acids significantly affected rumen bacteria and microbial growth. The bacteria in added fumaric acid and malic acid was significantly higher (p<0.05) and protozoa was significantly lower (p<0.05) than that of the control. Microbial growth with the addition of organic acids was greater than the control after 48 h incubation.

본 연구의 목적은 organic acids를 첨가하여 in vitro 상의 반추위 발효성상과 반추위 내 메탄 억제에 미치는 영향에 대한 효과를 알아보고자 하였다. 반추위액은 순천대학교 부속목장의 반추위 cannula가 시술된 Holstein에서 채취하였고, organic acids는 반추위액과 버퍼의 혼합액에 첨가하여 배양하였다. 그 결과 pH 값은 lactic acid, malic acid 및 succinic acid첨가구에서 6.69에서 6.16 정도로, 대조구와 다른 첨가구보다 낮았다. 총 가스 발생량은 배양 48시간에 aspartic acid, malic acid 및 succinic acid첨가구에서 유의적(p<0.05)으로 높았고, 메탄 발생량은 lactic acid 첨가구에서 대조구보다 낮았다. 총 VFA와 propionic acid의 농도는 배양 12시간에 모든 첨가구가 대조구에 비해 높았다. 반추위 미생물 측정 결과에서는 Fumaric acid와 malic acid의 bacteria수가 대조구에 비해 유의적으로 증가하였으며(p<0.05), protozoa수는 유의적(p<0.05)으로 감소되었다. 이상의 실험 결과를 종합해 보면, organic acids의 첨가는 반추위 내 pH를 감소시키고 가스 발생량, 반추위 미생물 성장량 및 propionic acid 모두 증가시켰으며, 특히 lactic acid는 메탄생성을 억제하였다. 앞으로 Organic acid와 다른 메탄억제 물질과 혼합하여 반추위 내 메탄생성 억제에 관한 구체적인 연구가 필요한 것으로 사료된다.

Keywords

References

  1. Abe, M., Shibu, H. and Kumeno, F. 1972. Improved method for counting rumen protozoa. Jap. J. Zootech. Sci. 43, 535.
  2. Asanuma, N., Iwamoto, M. and Hino, T. 1999. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J. Dairy Sci. 82, 780-787. https://doi.org/10.3168/jds.S0022-0302(99)75296-3
  3. Castillo, A. R., Gallardo, M. R., Maciel, M., Giordano, J. M., Conti, G. A., Gaggiotti, M. C., Quaino, O., Gianni, C. and Hartnell, G. F. 2004. Effects of feeding rations with genetically modified whole cottonseed to lactating Holstein cows. J. Dairy Sci. 87, 1778-1785. https://doi.org/10.3168/jds.S0022-0302(04)73333-0
  4. Callaway, T. R. and Martin, S. A. 1996. Effects of organic acid and monensin treatment on in vitro mixed ruminal microorganism fermentation of cracked corn. J. Anim. Sci. 74, 1982-1989.
  5. Carro, M. D. and Ranilla, M. J. 2003. Influence of different concentrations of disodium fumarate on methane production and fermentation of concentrate feeds by rumen micro- organisms in vitro. Br. J. Nutr. 90, 617-623. https://doi.org/10.1079/BJN2003935
  6. Dehority, B. A. and Scott, H. W. 1967. Extent of cellulose and hemicellulose digestion in various forages by pure cultures of rumen bacteria. J. Dairy Sci. 50, 1136-1141. https://doi.org/10.3168/jds.S0022-0302(67)87579-9
  7. Duncan, D. B. 1995. Multiple range and multiple F test. Biometrics 11, 1-6.
  8. Fedorah, P. M. and Hrudey, S. E. 1983. A simple apparatus for measuring gas production by methanogenic cultures in serum bottles. Environ. Tech. Lett. 4, 425-432. https://doi.org/10.1080/09593338309384228
  9. Hungate, R. E. 1966. The rumen and its microbes. Academic press, NY.
  10. IPCC (Intergovernmental Panel on Climate Change) (2007) Climate Change. 2007. The Scientific Basis, (Cambridge University Press, Cambridge, UK).
  11. Johnson, K. A. and Johnson, D. E. 1995. Methane emissions from cattle. J. Anim. Sci. 73, 2483-2492.
  12. Lopez, S., Valdes, C., Newbold, C. J. and Wallace, R. J. 1999. Influence of sodium fumarate addition on rumen fermentation in vitro. Br. J. Nutr. 81, 59-64.
  13. Lowe, S. E., Theodorou, M. K., Trinci, A. P. J. and Hespell, R. B. 1985. Growth of anaerobic rumen fungi on defined and semi-defined media lacking rumen fluid. J. Gen. Microbiol. 131, 2225-2229.
  14. Martin, S. A. and Park, C. M. 1996. Effect of extracellular hydrogen on organic acid utilization by the ruminal bacterium Selenomonas ruminantium. Curr. Microbiol. 32, 327-331. https://doi.org/10.1007/s002849900058
  15. Martin, S. A. and Streeter, M. N. 1995. Effect of malate on in vitro mixed ruminal microorganism fermentation. J. Anim. Sci. 73, 2141-2145.
  16. Martin, S. A. 1998. Manipulation of ruminal fermentation with organic acids: a review. J. Anim. Sci. 76, 3123-3132.
  17. Moore, J. E. 1970. Procedure for two-stage in vitro digestion of forage. In L. E. Harrison (ed.). Nutrition research technique for domestic and wild animals. J. Brit. Grassl. Sci. 18, 119.
  18. Moss, A. R., Jouany, J. P. and Newbold, J. 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootech. 49, 231-253. https://doi.org/10.1051/animres:2000119
  19. Newbold, C. J., Lopez, S., Nelson, N., Ouda, J. O., Wallace, R. J. and Moss, A. R. 2005. Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro. Br. J. Nutr. 94, 27-35. https://doi.org/10.1079/BJN20051445
  20. SAS. 1996. SAS User Guide. Release 6. 12th eds., SAS Inst. Inc. Cary NC. USA.
  21. Ungerfeld, E. M., Rust, S. R. and Burnett, R. 2003. Use of some novel alternative electron sinks to inhibit ruminal methanogenesis. Reprod. Nutr. Dev. 43, 189-202. https://doi.org/10.1051/rnd:2003016

Cited by

  1. In VitroMethane Production and Quality of Corn Silage Treated with Maleic Acid vol.14, pp.4, 2015, https://doi.org/10.4081/ijas.2015.3994