DOI QR코드

DOI QR Code

Effects of Ectopic Expression of Transcription Factors on Adipogenic Transdifferentiation in Bovine Myoblasts

한우(Bos taurus coreanae) 유래 myoblast에서 전사인자 과발현에 의한 지방세포로의 교차 분화 유도

  • Moon, Yang Soo (Department of Animal Science & Biotechnology, Gyeongnam National University of Science and Technology)
  • 문양수 (경남과학기술대학교 동물생명과학과)
  • Received : 2012.08.30
  • Accepted : 2012.10.10
  • Published : 2012.10.30

Abstract

The present study was conducted to investigate whether myoblasts can be transdifferentiated into adipocytes by ectopic expression of adipogenic transcription factors, including peroxisome proliferator-activated receptor-${\gamma}$ ($PPAR{\gamma}$), CCAAT/enhancer-binding protein-${\alpha}$ (C/$EBP{\alpha}$), sterol regulatory element binding protein-1c (SREBP1c), and Krueppel-like factor 5 (KLF5), in primary bovine satellite cells. Transcription factors were transiently transfected into primary bovine myoblasts, and the cells were cultured with adipogenic differentiation medium for 2 days and then cultured on growth medium for an additional 8 days. Ectopic expression of $PPAR{\gamma}$ or C/$EBP{\alpha}$ alone was insufficient to induce adipogenesis in myoblasts. However, overexpression of both $PPAR{\gamma}$ and C/$EBP{\alpha}$ in myoblasts was able to induce adipogenic transdifferentiation as indicated by the appearance of mature adipocytes, the induction of adipogenic gene expressions, and the suppression of myogenic gene expressions. In addition, KLF5 and $PPAR{\gamma}$ co-transfected bovine myoblasts were converted to adipocytes but not in cells transfected with only KLF5 expression vector. Overexpression of SREBP1c alone was sufficient to induce transdifferentiation from myoblasts into adipocytes. These results demonstrate that primary bovine satellite cells can be transdifferentiated into adipocytes either by single ectopic expression or combined expression of adipogenic transcription factors in a culture system.

본 연구는 한우유래 myoblast에서 지방세포분화 유도 전사인자들을 과발현시켜 지방세포로의 교차분화를 유도하기 위하여 실시하였다. 한우 유래 satellite cell을 배양한 후 adipogenic transcription factor인 $PPAR{\gamma}$, C/$EBP{\alpha}$, SREBP1c, KLF5등을 단독 또는 co-transfection을 실시하여 세포에 과발현을 유도하였다. 이들 세포들은 adipogenic differentiation medium에서 2일간 배양한 후growth medium에서 8일간 추가로 배양하였다. 지방세포로의 교차분화 유무는 Oil-red O염색과 지방세포 마커 유전자들의 발현으로 확인하였다. $PPAR{\gamma}$과 C/$EBP{\alpha}$를 각각 단독으로 과발현을 유도한 경우myoblast에서 지방세포로의 교차분화를 유도하기에는 충분하지 못하였다. 그러나 $PPAR{\gamma}$와 C/$EBP{\alpha}$을 co-transfection을 실시한 경우 지방세포로의 교차분화가 유도되었고, 세포내지방구형성, 지방세포 마커유전자의 발현, 근세포 마커유전자의 발현 감소 등이 확인되었다. KLF5 와 $PPAR{\gamma}$를 동시에 과발현할 경우 지방세포로의 교차분화를 볼 수 있었지만 KLF단독의 경우는 교차분화를 유도하지 못하였다. 할성형SREBP1c (tSREBP1c)의 경우, 단독으로 myoblast에 과발현을 처리한 경우만으로 지방세포로의 교차분화를 유도할 수 있었다. 이들 결과는 한우유래 satellite cell을 이용하여 지방세포분화 전사인자를 단독 혹은 조합하여 이들 세포에 과발현 시킬 경우 지방세포로의 교차분화를 유도할 수 있음을 보여 주었다.

Keywords

References

  1. Asakura, A., Komaki, M. and Rudnicki, M. A. 2001. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic differentiation. Differentiation 68, 245-253. https://doi.org/10.1046/j.1432-0436.2001.680412.x
  2. Aso, H., Abe, H., Nakajima, I., Ozutsumi, K., Yamaguchi, T., Takamori, Y., Kodama, A., Hoshino, F. B. and Takano, S. 1995. A preadipocyte clonal line from bovine intramuscular adipose tissue: nonexpression of GLUT-4 protein during adipocyte differentiation. Biochem. Biophys. Res. Commun. 213, 369-375. https://doi.org/10.1006/bbrc.1995.2141
  3. Ban, A., Yamanouchi, K., Matsuwaki, T. and Nishihara, M. 2008. In vivo gene transfer of PPARgamma is insufficient to induce adipogenesis in skeletal muscle. J. Vet. Med. Sci. 70, 761-767. https://doi.org/10.1292/jvms.70.761
  4. Beauchamp, J. R., Heslop, L., Yu, D. S. W., Tajbakhsh, S and Kelly, R. G. 2000. Expression of CD34 and Myf5 defines the majority of senescent adult skeletal muscle satellite cells. J. Cell Biol. 151, 1221-1234. https://doi.org/10.1083/jcb.151.6.1221
  5. Ericsson, J., Jackson, S. M., Kim, J. B., Spiegelman, B. M. and Edwards, P. A. 1997. Identification of glycerol-3-phosphate acyltransferase as an adipocyte determination and differentiation factor 1- and sterol regulatory element- binding protein-responsive gene. J. Biol. Chem. 272, 7298-7305. https://doi.org/10.1074/jbc.272.11.7298
  6. Fux, C., Mitta, B., Kramer, B. P. and Fussenegger, M. 2004. Dual-regulated expression of C/EBP-${\alpha}$ and BMP-2 enables differential differentiation of C2C12 cells into adipocytes and osteoblasts. Nucleic Acids Res. 32, e1. https://doi.org/10.1093/nar/gnh001
  7. Hu, E., Tontonoz, P. and Spiegelman, B. M. 1995. Trandifferentiation of myoblasts by the adipogenic transcription factor PPAR-$\gamma$ and C/EBP-$\alpha$ . Proc. Natl. Acad. Sci. USA. 92, 9856-9860. https://doi.org/10.1073/pnas.92.21.9856
  8. Kaczynski, J., Cook, T. and Urrutia, R. 2003. Sp1- and Kruppel-like transcription factors. Genome Biol. 4, 206. https://doi.org/10.1186/gb-2003-4-2-206
  9. Kim, C. Y., Le, T. T., Chen, C., Cheng, J. X. and Kim, K. H. 2011. Curcumin inhibits adipocyte differentiation through modulation of mitotic clonal expansion. J. Nutr. Boiochem. 22, 910-920. https://doi.org/10.1016/j.jnutbio.2010.08.003
  10. Kim, J. B. and Spiegelman, B. M. 1996. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 10, 1096-1107. https://doi.org/10.1101/gad.10.9.1096
  11. Konieczny, S. F. and Emerson, C. P. 1984. 5-Azacytidine induction of stable mesodermal stem cells lineages from 10T1/2cells: evidence for regulatory genes controlling determination. Cell 38, 791-800. https://doi.org/10.1016/0092-8674(84)90274-5
  12. Kook, S. H., Choi, K. C., Son, Y. O., Lee, K. Y., Hwang, I. H., Lee, H. J., Chang, J. S., Choi, I. H. and Lee, J. C. 2006. Satellite cells isolated from adult Hanwoo muscle can proliferate and differentiate into myoblasts and adipose-like cells. Mol. Cells 22, 239-245.
  13. Lee, E. J., Choi, J., Hyun, J. H., Cho, K. H., Hwang, I. H., Lee, H. J., Chang, J. S. and Choi, I. 2007. Steroid effects on cell proliferation, differentiation and steroid receptor gene expression in adult bovine muscle satellite cells. Asian-Aust. J. Anim. Sci. 20, 501-510. https://doi.org/10.5713/ajas.2007.501
  14. Oishi, Y. I., Manabe, Tobe, K., Tsushima, K., Shindo, T., Fujiu, K., Nishimura, G., Maemura, K., Yamauchi, T., Kubota, N., Suzuki, R., Kitamura, T., Akira, S., Kadowaki, T. and Nagai, R. 2005. Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metabolism 1, 27-39. https://doi.org/10.1016/j.cmet.2004.11.005
  15. Poulos, S. P. and Hausman, G. J. 2006. A comparison of thiazolidinedione-induced adipogenesis and myogenesis in stromal-vascular cells from subcutaneous adipose tissue or semitendinosus muscle of postnatal pigs. J. Anim. Sci. 84, 1076-1082.
  16. Singh, N. K., Chae, H. S., Hwang, I. H., Yoo, Y. M. Ahn, C. N., Lee, S. H., Lee, H. J., Park, H. J. and Chung, H. Y. 2007. Transdifferentiation of porcine satellite cells to adipoblasts with ciglitizone. J. Anim. Sci. 85, 1126-1135. https://doi.org/10.2527/jas.2006-524
  17. Tontonoz, P., Hu, E., Graves, R. A., Budavari, A. I. and Spiegelman, B. M. 1994. mPPAR gamma 2: Tissue-specific regulator of an adipocyte enhancer. Genes Dev. 8, 1224-1234. https://doi.org/10.1101/gad.8.10.1224
  18. Tosh, D. and Slack, J. M. 2002. How cells change their phenotype. Nat. Rev. Mol. Cell Biol. 3, 187-194. https://doi.org/10.1038/nrm761
  19. Wada, M., Inagawa-Ogashiwa, M., Shimizu, S., Yasumoto, S. and Hashimoto, N. 2002. Generation of different fates from multipotent muscle stem cells. Development 129, 2987-2995.
  20. Yamanouchi, K., Ban, A., Shibata, S., Hosoyama, T., Murakami, Y. and Nishihara, M. 2007. Both PPARgamma and C/EBPalpha are sufficient to induce transdifferentiation of goat fetal myoblasts into adipocytes. J. Reprod. Dev. 53, 563-572. https://doi.org/10.1262/jrd.18169
  21. Yeow, K., Phillips, B., Dani, C., Cabane, C. and Amri, E. Z. 2001. Inhibition of myogenesis enables adipogenic transdifferentiation in the C2C12 myogenic cell line. FEBS lett. 506, 157-162. https://doi.org/10.1016/S0014-5793(01)02900-3