DOI QR코드

DOI QR Code

Community Structure and Diversity across Spatial Scales of Macrobenthos in the Seomjin River

섬진강 하구에 서식하는 저서성 대형무척추동물의 군집구조 및 공간 규모에서 다양성

  • Huh, Man Kyu (Department of Molecular Biology, Dongeui University) ;
  • Joo, Woo Hong (Department of Biology, Changwon National University) ;
  • Choi, Choo Joo (Department of Molecular Biology, Dongeui University) ;
  • Seo, Jeoung-Yoon (Department of Envoronmental Engineering, Changwon National University)
  • 허만규 (동의대학교 분자생물학과) ;
  • 주우홍 (창원대학교 생물학과) ;
  • 최주수 (동의대학교 분자생물학과) ;
  • 서정윤 (창원대학교 환경공학과)
  • Received : 2012.07.20
  • Accepted : 2012.08.22
  • Published : 2012.10.30

Abstract

Biological assessments of the macrobenthos community were carried out in the Seomjin River from May 2009 to November 2010. Fishes from 106 species belonging to 24 families and 10 orders were collected from the survey sites. Locational dominant species differed among sites, and the numbers of species and individuals differed depending on site, although six sites were not significantly different on the same survey dates. Across sites, the average number of species was 38.3, ranging from five at site 1 to 66 at site 2 in May 2009. Site 2 had the highest number of species on November 2009, while site 3 had the lowest. Arthropods dominated the macrobenthic community at species (63.2% May) and individual (60.9% November) levels. DO, BOD, and COD were shown to have the greatest effect on the numbers of macrobenthos. Peaks in the diversity index trended downwards from upstream to downstream sites.

섬진강에서 2009년과 2010년 사이의 대형무척추동물에 대한 생물학적 군락 분석을 실시하였다. 조사 정점에 재해 총 10목 24과 106종이 채집이 되었다. 비록 정점별 종과 개체수는 다르지만 조사 시기별로는 정점 간 유의한 차이를 나타내지 않았다. 정점별 우점종은 달랐다. 2009년 5월 정점에 대해 정점 1이 5종인 반면 정점 2는 66종으로 차이를 보였으며 평균 종수는 38.3종이었다. 반면에 정점 2는 2009년 11월에 가장 많은 종수를 나타내었고 정점 3은 가장 낮았다. 대형무척추동물 중에서 절지동물문(Phylum Arthropod)이 종 수준 또는 개체 수준에서 우점이었는데 종 수준으로 5월은 63.2%, 11월은 60.9%였다. 조사 정점에 대한 환경 인자 분석의 결과 대형무척추 동물의 서식에 미치는 인자로 용존산소량(DO), 생물학적 산소요구량(BOD), 화학적 산소요구량(COD)이 중요한 것으로 나타났다. 생물학적 종다양도는 섬진강 상류에서 하류로 갈수록 낮아지는 경향을 나타내었다.

Keywords

References

  1. APHA. 1985. American Public Health Association. Standard Methods for the examination of water and waste water 15th edition.
  2. Hadong-gun. 2012. http://www.hadong.go.kr/main.
  3. Hynes, H. B. N. 1963. Imported organic matter and secondary productivity in streams. Proc. 16th Int. Congr. Zool. 4, 324-329.
  4. Jawad, L. 2003. Impact of environmental change on the freshwater fish Fauna of Iraq, Inter. J. Environ. Stud. 60, 581-593. https://doi.org/10.1080/0020723032000087934
  5. Kehde, P. M. and Wilhm, J. L. 1972. The effects of grazing by snails on community structure of periphyton in laboratory streams. Am. Midl. Nat. 87, 8-24. https://doi.org/10.2307/2423878
  6. Magurran, A. E. 1988. Ecological diversity and its measurement. Univ. Press, Cambridge.
  7. McNaughton, S. J. 1967. Relationship among functional properties of California Glassland. Nature 216, 144-168.
  8. Nagai, N., Tadokoro, K., Kuroda, K. and Sugimoto, T. 2006. Occurrence characteristics of chaetognath species along the PM transect in the Japan Sea during 1972-2002. J. Oceanogr. 62, 597-606. https://doi.org/10.1007/s10872-006-0079-x
  9. Nagai, N., Tadokoro, K., Kuroda, K. and Sugimoto, T. 2008. Chaetognath species-specific responses to climate regime shifts in the Tsushima Warm Current of the Japan Sea. Plankton Benthos Res. 3, 86-95. https://doi.org/10.3800/pbr.3.86
  10. Nelson, J. S. 1994. Fishes of the World. pp. 1-600, 3rd eds., John Wiley and Sons Inc., New York.
  11. Pielou, E. C. 1975. Ecological Diversity. pp. 1-165, John Wiley and Sons, New York.
  12. Shajan, K. P. 2001. Geochemistry of bottom sediments from a river-estuary-shelf mixing zone on the tropical southwest coast of India. Bull. Geol. Survey Japan 52, 371-382.
  13. Shannon, C. E. and Weaver, W. 1963. The mathematical theory of communications. University of Illinois press. Urbana, pp. 117. ISBN: 0-252-72548-4.
  14. Sheik, R. A., Fisher, S. J. and Willis, D. W. 1998. White crappie biology in an upper missouri river backwater. Proc. Acad. Sci. 77, 151-161.
  15. Surber, E. W. 1937. Rainbow trout and bottom fauna production in one mile of stream. Trans. Am. Fish Soc. 66, 193-202. https://doi.org/10.1577/1548-8659(1936)66[193:RTABFP]2.0.CO;2
  16. Tabatabaie, T. and Amiri, F. 2010. The impact of industrial pollution on macrobenthic fauna communities. Afr. J. Environ. Sci. Tech. 4, 547-557.
  17. Tejerina-Garro, F. L., Maldonado, M., Ibanez, C., Pont, D., Roset, N. and Oberdorff, T. 2005. Effects of natural and anthropogenic environmental changes on riverine fish assemblages: a framework for ecological assessment of rivers. Brazilian Arch. Biol. Tech. 48, 91-108. https://doi.org/10.1590/S1516-89132005000100013
  18. Warton, D. I., Wright, I. J., Falster, D. S. and Westoby, M. 2006. Bivariate line fitting methods for allometry. Biol. Rev. Camb. Philos. Soc. 81, 259-291. https://doi.org/10.1017/S1464793106007007

Cited by

  1. Analysis and prediction of the spatial distribution of EPT (Ephemeroptera, Plecoptera, and Trichoptera) assemblages in the Han River watershed in Korea vol.20, pp.2, 2017, https://doi.org/10.1016/j.aspen.2017.03.024