DOI QR코드

DOI QR Code

Antioxidant and Inhibitory Effects of Korean Panax ginseng Extract on Pro-inflammatory Mediators in LPS-stimulated RAW264.7 Macrophages

산양삼(Korean Panax ginseng) 추출물의 항산화 효과 및 LPS로 염증이 활성화된 RAW 264.7 대식세포에서의 염증매개물질 억제효과

  • Kim, Ye-Jin (Dept. of Herbal Food Science, Daegu Haany University) ;
  • Son, Dae-Yeul (Dept. of Herbal Food Science, Daegu Haany University)
  • 김예진 (대구한의대학교 한방식품약리학과) ;
  • 손대열 (대구한의대학교 한방식품약리학과)
  • Received : 2012.06.12
  • Accepted : 2012.07.16
  • Published : 2012.10.31

Abstract

Biological activities of Korean Panax ginseng 55% ethanol extract (KPGE) were investigated. The measured total polyphenol content of KPGE was 357.45 mg/100 g. KPGE showed the highest ${\alpha},{\alpha}$-diphenyl-${\beta}$-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzo-thiazoline-6-sulfonic acid (ABTS) radical scavenging activities of 80% and 86% at 1,000 ${\mu}g/mL$, respectively. DPPH and ABTS radical scavenging activities significantly increased in a KPGE concentration-dependent manner. SOD-like activity of KPGE (1, 10, and 100 ${\mu}g/mL$) increased from 22% up to 33% at KPGE concentrations of 500 and 1,000 ${\mu}g/mL$. KPGE treatment significantly suppressed the generation of pro-inflammatory mediators, including nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), and cytokines (tumor necrosis factor-alpha: TNF-${\alpha}$, interleukin-6: IL-6, interleukin-$1{\beta}$: IL-$1{\beta}$), in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. KPGE demonstrated strong anti-inflammatory activity that reduced NO and $PGE_2$ production in LPS-stimulated RAW 264.7 cells. Even low concentrations of KPGE (1 and 10 ${\mu}g/mL$) reduced $PGE_2$ and NO production in RAW 264.7 macrophages without LPS-stimulation, respectively. At concentrations of 100, 500, and 1,000 ${\mu}g/mL$, TNF-${\alpha}$, IL-$1{\beta}$ and IL-6 production were significantly suppressed. The results of our study suggest the potential of Korean Panax ginseng as an excellent antioxidant substance for inhibiting inflammatory mediators. Therefore, Korean Panax ginseng (KPGE) may be used as a therapeutic approach to various inflammatory diseases.

산양삼 55% 에탄올 추출물의 항산화 효과 및 LPS로 염증이 유도된 RAW 264.7 대식세포에서 염증매개 물질의 억제능력을 측정하여 항염증 효과를 살펴보았다. 폴리페놀 함량, DPPH, ABTS sytem 및 SOD 유사활성을 측정하여 항산화 효과를 확인한 결과, 높은 폴리페놀 함량(357.45 mg/100 g)이 확인되었고, free radical 소거활성을 측정한 결과 KPGE는 농도 의존적으로 free radical을 소거하였으며, 대조군인 BHT와 유사한 소거활성이 확인되어 KPGE의 우수한 항산화 활성을 확인할 수 있었다. 조사된 최고 농도(1,000 ${\mu}g/mL$)에서 DPPH(80%)와 ABTS(86%)는 가장 높은 활성을 나타냈다. SOD 유사활성은 1, 10, 100 ${\mu}g/mL$ 농도에서 22%의 활성이 확인되었고, 500, 1000 ${\mu}g/mL$ 농도에서 33%의 높은 항산화 활성이 확인되었다. 또한, KPGE의 항염증 효과를 확인하기 위해 LPS로 염증이 유도된 RAW 264.7 대식세포에서 NO, $PGE_2$ 및 전염증성 cytokine(TNF-${\alpha}$, IL-$1{\beta}$, IL-6)을 측정한 결과, 추출물은 농도 의존적으로 NO, $PGE_2$ 생성 및 전염증성 cytokine인 TNF-${\alpha}$, IL-$1{\beta}$, IL-6의 생성을 효과적으로 억제하는 것을 확인할 수 있었다. 본 연구 결과를 통하여 산양삼 55% 에탄올 추출물 KPGE는 높은 항산화 활성과 염증매개 물질의 생성을 억제하는 우수한 항염증 효과가 있는 것으로 확인되었다.

Keywords

References

  1. Funk CD. 2001. Prostaglandins and leukorienes; advances in eicosanoid biology. Science 294: 1871-1875. https://doi.org/10.1126/science.294.5548.1871
  2. Albina JE, Reichner JS. 1995. Nitric oxide in inflammation and immunity. New Horiz 3: 46-64.
  3. Lee SJ, Lim KT. 2008. Phytogly coprotein inhibits interleukin- $1 \beta$ and interleukin-6 via p38 mitogen activated protein kinase in lipopolysaccharide stimulated RAW264.7 cells. Naunyn-Schmied Arch Pharmacol 377: 45-54. https://doi.org/10.1007/s00210-007-0253-8
  4. Lawrence T, Wiilloughby DA, Gilroy DW. 2002. Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol 2: 787-759. https://doi.org/10.1038/nri915
  5. Higuchi M, Hisgahi N, Taki H, Osawa T. 1990. Cytolytic mechanism of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophage. J Immunol 144: 1425-1431.
  6. Lim W, Mudge KW, Weston LA. 2007. Utilization of RAPD markers to assess genetic diversity of wild populations of North American ginseng (Panax quinquefolium). Planta Med 73: 71-76. https://doi.org/10.1055/s-2006-951768
  7. Lui JHC, Staba EJ. 1980. The ginsenosides of various ginseng plants and selected products. J Nat Prod 43: 340-346. https://doi.org/10.1021/np50009a004
  8. Folin O, Denis W. 1912. On phosphotungastic phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-249.
  9. Blois MS. 1958. Antioxidant determinations by the use or a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  10. Re R, Pellegrini N, Proteggente A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  11. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  12. Kang YH, Park YK, Lee GD. 1996. The nitrite scavenging and electron donating ability of phenolic compounds. Korean J Food Sci Technol 28: 232-239.
  13. Kim KM, Park MH, Kim KH, Im SH, Park YH. 2009. Analysis of chemical composition and in vitro anti-oxidant properties of extracts from sea buckthorn (Hippophae rhamnoides). J Appl Biol Chem 52: 58-64. https://doi.org/10.3839/jabc.2009.011
  14. Lee HH, Kim IJ, Kang ST, Kim YH, Lee JO, Rye CH. 2010. Development of black garlic Yakju and its antioxidant activity. Korean J Food Sci Technol 42: 69-74.
  15. Kim SI, Sim KH, Ju SY, Han YS. 2009. A study of antioxidative and hypoglycemic activities of Omija (Schizandra chinensis Baillon) extract under variable extract conditions. Koeran J Food & Nutr 22: 41-47.
  16. Eom Sh, Park HJ, Jin CW, Park SM, Kim MJ, Yu CY, Cho DH. 2007. Changes of antioxidant activity in Juglans mandshrica Maxim. leaves by far infrared irradiation. Korean J Medicinal Crop Sci 15: 266-270.
  17. Ahn SI, Heuing BJ, Son JY. 2007. Antioxidative activity and nitrite-scavenging abilities of some phenolic compounds. Korean J Food Cookery Sci 23: 19-24.
  18. Kim SH, Chung MJ, Jang HD, Ham SS. 2010. Antioxidative activities of the Codonopsis lanceolata extract in vitro and in vivo. J Korean Soc Food Sci Nutr 39: 193-202. https://doi.org/10.3746/jkfn.2010.39.2.193
  19. Branen AL. 1975. Toxicology and biochemistry of butylated hydroxy anisole and butylated hydroxytoluene. J Oil Chem Soc 52: 59-62. https://doi.org/10.1007/BF02901825
  20. Choi HJ, Zhang YB, An BJ, Choi C. 2002. Identification of biologically active compounds from Panax ginseng C. A. Meyer. Korean J Food Sci Technol 34: 493-497.
  21. Jang HY, Park HS, Kwon KR, Rhim TJ. 2008. A study on the comparison of antioxidant effects among wild ginseng, cultivated wild ginseng, and cultivated ginseng extracts. J Kor Inst Herb Acupunc 11: 67-78. https://doi.org/10.3831/KPI.2008.11.3.067
  22. Murakami A, Takahashi D, Koshimizu K, Ohigashi H. 2003. Synergistic suppression of superoxide and nitric oxide generation from inflammatory cells by combined food factors. Mutat Res 523-524: 151-161. https://doi.org/10.1016/S0027-5107(02)00331-7
  23. Lim JD, Yu CY, Kim MJ, Yun SJ, Lee SJ, Kim NY, Chung IM. 2004. Comparison of SOD activity and phenolic compounds contents in various Korean medicinal plant. Korean J Medicinal Crop Sci 12: 191-202.
  24. Hong HD, Kang NK, Kim SS. 1998. Superoxide dismutaselike activity of apple juice mixed with some fruits and vegetables. Korean J Food Sci Technol 30: 1484-1487.
  25. Nathan C, Xie QW. 1994. Nitric oxide synthase: roles, tolls, and controls. Cell 78: 915-918. https://doi.org/10.1016/0092-8674(94)90266-6
  26. Lowenstein CJ, Snyder SH. 1992. Nitric oxide, a novel biologic messenger. Cell 70: 705-707. https://doi.org/10.1016/0092-8674(92)90301-R
  27. Moncada S, Palmer RM, Higgs EA. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109-142.
  28. MaCartney-Francis N, Allen JB, Mizel DE, Albina JI, Xie QW, Nathan CF, Wahl SM. 1993. Suppression of arthritis by an inhibitor of nitric oxide synthase. J Exp Med 178: 749-754. https://doi.org/10.1084/jem.178.2.749
  29. Bishop-Bailey D, Calatayud S, Warner TD, Hla T, Michell JA. 2002. Prostaglandins and the regulation of tumor growth. J Environ Pathol Tox Oncol 21: 93-101.
  30. Kim HJ, Park TS, Jung MS, Son JH. 2011. Study on the anti-oxidant and anti-inflammatory activities of sarcocarp and calyx of persimmon (Cheongdo Bansi). J Appl Biol Chem 54: 71-78. https://doi.org/10.3839/jabc.2011.013
  31. Jung SM, Schumacher HR, Kim H, Kim M, Lee SH, Pessler F. 2007. Reduction of urate crystal-induced inflammation by root extracts from traditional oriental medicinal plants: elevation of prostaglandin $D_{2}$ levels. Arthritis Res Ther 9: R64. https://doi.org/10.1186/ar2222
  32. Yang HM, Lim SS, Kee YS, Shin HK, Oh YS, Kim JK. 2007. Comparison of the anti-inflammatory effects of the extracts from Rubus coreanus and Rubus occidentalis. Korean J Food Sci Technol 39: 342-347.

Cited by

  1. Revitalizing Mountain Ginseng Cultivation in North Jeolla Province, South Korea vol.15, pp.4, 2016, https://doi.org/10.1007/s11842-016-9336-z
  2. Anti-inflammatory Activity of an Ethanol Extract of Laminaria japonica Root on Lipopolysaccharide-induced Inflammatory Responses in RAW 264.7 Cells vol.46, pp.6, 2014, https://doi.org/10.9721/KJFST.2014.46.6.729
  3. Evaluation of Biological Activities of Fermented Hizikia fusiformis Extracts vol.24, pp.3, 2014, https://doi.org/10.5352/JLS.2014.24.3.304
  4. The Study of Mountain Ginseng-added High Fat Diet on Anti-Apoptosis of Skeletal Muscle vol.104, pp.3, 2015, https://doi.org/10.14578/jkfs.2015.104.3.383
  5. Antioxidant and Anti-inflammatory Activity of Medicinal Herbs Composites vol.49, pp.5, 2015, https://doi.org/10.14397/jals.2015.49.5.279
  6. 산수유(Corni fructus) 분획 추출물의 항산화 활성 및 RAW 264.7 대식세포에서 염증매개물질 억제 효과 vol.23, pp.6, 2012, https://doi.org/10.11002/kjfp.2016.23.6.876
  7. 옥수수수염 알코올 추출물의 항염 및 항아토피 효과 vol.49, pp.6, 2012, https://doi.org/10.9721/kjfst.2017.49.6.710
  8. 버드나무(Salix Koreensis Andersson) 가지 추출물의 항산화 및 항염증 효과 vol.33, pp.2, 2012, https://doi.org/10.7318/kjfc/2018.33.2.104
  9. 혈관내피세포에서 산양삼 추출물과 진세노사이드 Rg5의 혈관신생 효과 vol.50, pp.3, 2012, https://doi.org/10.9721/kjfst.2018.50.3.349
  10. Antioxidant and anti-inflammatory activities of Platycodon grandiflorum seeds extract vol.18, pp.1, 2012, https://doi.org/10.1080/19476337.2020.1770336
  11. 노각나무 잎과 가지 추출물의 항산화 효과 vol.31, pp.2, 2012, https://doi.org/10.5352/jls.2021.31.2.229
  12. Comparison of ginsenoside (Rg1, Rb1) content and radical-scavenging activities of wild-simulated ginseng extract with respect to the solvent vol.28, pp.2, 2012, https://doi.org/10.11002/kjfp.2021.28.2.261
  13. Biofunctional properties of wild cultivated and cultivated Ginseng (Panax ginseng Meyer) extracts obtained using subcritical water extraction vol.56, pp.8, 2021, https://doi.org/10.1080/01496395.2020.1781893