DOI QR코드

DOI QR Code

Wireless Access Network Virtualization Based on Distributed Antenna Systems

분산 안테나 시스템에 기반한 무선 액세스망 가상화

  • 김수민 (경상대학교 해양산업연구소) ;
  • 정방철 (경상대학교 정보통신공학과, 해양산업연구소)
  • Received : 2012.04.20
  • Accepted : 2012.05.01
  • Published : 2012.10.31

Abstract

In this paper, we propose a wireless access network virtualization algorithm based on a digital unit (DU)-radio unit (RU) separated network structure in a cellular network with multiple radio access technologies (RATs). The proposed wireless access network virtualization algorithm consists of a baseline access network virtualization, RAT virtualization, and access path migration algorithms. Final wireless access network virtualization is performed by sequentially performing these procedures. Through system-level simulations which assume 3GPP LTE and WiMAX systems, the performance of the proposed wireless access network virtualization is evaluated in terms of system throughput for two scenarios according to asymmetry of network traffic load. Numerical results show that our proposed wireless access network virtualization algorithm achieves significant system throughput gain even in asymmetric traffic load and user distribution situations.

본 논문에서는 다수 무선 접속 기술 (Radio Access Technology; RAT)이 통합되어 운용되는 셀룰러 네트워크에서 차세대 이동통신 네트워크 진화 방향인 디지털 유닛 (DU)-라디오 유닛 (RU) 분리 구조를 기본으로 무선 액세스 네트워크 가상화 알고리즘을 제안한다. 제안 무선 액세스 네트워크 가상화 알고리즘은 크게 기본 액세스 네트워크 가상화, RAT 가상화, 액세스 경로 이주 알고리즘으로 구성되고, 순차적인 수행을 통하여 최종 무선 액세스 네트워크 가상화가 이루어진다. 제안 무선 액세스 네트워크 가상화 알고리즘은 3GPP LTE와 WiMAX의 두 무선 접속 기술을 예제로 한 시스템 레벨 시뮬레이션을 통하여 시스템 수율 측면에서 성능이 평가된다. 이 때, 네트워크 트래픽 로드의 비대칭성에 따른 두 가지 시나리오를 고려하고, 제안 무선 액세스 네트워크 가상화 알고리즘은 비대칭적 네트워크 트래픽 로드와 사용자 분포 상황에서도 상당한 성능 이득을 성취한다.

Keywords

References

  1. http://www.3gpp.org, TSG-RAN WG.
  2. J. Lu and J. Turner, Efficient Mapping of Virtual Networks onto a Shared Substrate, Tech. Rep. WUCSE-2006-35, Washington University, 2006.
  3. Y. Zhu and M. Ammar, "Algorithms for assigning substrate network resources to virtual network components," in Proc. IEEE INFOCOM, 2006.
  4. W. Szeto, Y. Iraqi, and R. Boutaba, "A multicommodity flow based approach to virtual network resource allocation," in Proc. IEEE GLOBECOM, 2003.
  5. A. Gupta, J.M. Kleinberg, A. Kumar, R. Rastogi, and B. Yener, "Provisioning a virtual private network: a network design problem for multicommodity flow," in Proc. ACM STC, 2001.
  6. J. Fan and M. Ammar, "Dynamic topology configuration in service overlay networks - a study of reconfiguration policies," in Proc. IEEE INFOCOM, 2006
  7. M. Yu, Y. Yi, J. Rexford, and M. Chiang, "Rethinking Virtual Network Embedding: Substrate Support for Path Splitting and Migration," ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 17-29, Apr. 2008. https://doi.org/10.1145/1355734.1355737
  8. R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan, "NVS: A Substrate for VirtualizingWireless Resources in Cellular Networks," IEEE/ACM Trans. Network., 2011. (To appear)
  9. G. Smith, A. Chaturvedi, A. Mishra, S. Bnerjee, "Wireless Virtualization on Commodity 802.11 Hardware," in Proc. ACM WiNTECH, Sep. 2007.
  10. D. Yun and Y. Yi, "Virtual Network Embedding in Wireless Multihop Networks," in Proc. ACM CFI, June 2011.
  11. E. H. Ong and J. Y. Khan, "On Optimal Network Selection in a Dynamic Multi-RAT Environment," IEEE Communications Letters, vol. 14, no. 3, Mar. 2010.
  12. J. Perez-Romero, O. Sallent, and R. Agusti, "A Generalized Framework for Multi-RAT Scenarios Characterisation," in Proc. IEEE VTC-Spring, Apr. 2007.
  13. H. Zhu, "Performance Comparison Between Distributed Antenna and Microcellular Systems," IEEE Journal on Selected Area on Communications, vol. 29, no. 6, pp. 1151 - 1163, June 2011. https://doi.org/10.1109/JSAC.2011.110604
  14. L. Dai, "A Comparative Study on Uplink Sum Capacity with Co-Located and Distributed Antennas," IEEE Journal on Selected Area on Communications, vol. 29, no. 6, pp. 1200 - 1213, June 2011. https://doi.org/10.1109/JSAC.2011.110608
  15. D. Tse, Forward link multiuser diversity through rate adaptation and scheduling, presented at the Bell Laboratories Presentation, Aug. 1999.