DOI QR코드

DOI QR Code

Population Genetic Structure and Evidence of Demographic Expansion of the Ayu (Plecoglossus altivelis) in East Asia

  • Kwan, Ye-Seul (Division of EcoScience, Ewha Womans University) ;
  • Song, Hye-Kyung (Division of EcoScience, Ewha Womans University) ;
  • Lee, Hyun-Jung (Division of EcoScience, Ewha Womans University) ;
  • Lee, Wan-Ok (Inland Fisheries Research Institute, National Fisheries Research and Development Institute) ;
  • Won, Yong-Jin (Division of EcoScience, Ewha Womans University)
  • 투고 : 2012.09.10
  • 심사 : 2012.10.20
  • 발행 : 2012.10.31

초록

Plecoglossus altivelis (ayu) is an amphidromous fish widely distributed in Northeastern Asia from the East China Sea to the northern Japanese coastal waters, encompassing the Korean Peninsula within its range. The shore lines of northeastern region in Asia have severely fluctuated following glaciations in the Quaternary. In the present study, we investigate the population genetic structure and historical demographic change of P. altivelis at a population level in East Asia. Analysis of molecular variance (AMOVA) based on 244 mitochondrial control region DNA sequences clearly showed that as the sampling scope extended to a larger geographic area, genetic differentiation began to become significant, particularly among Northeastern populations. A series of hierarchical AMOVA could detect the genetic relationship of three closely located islands between Korea and Japan that might have been tightly connected by the regional Tsushima current. Neutrality and mismatch distribution analyses revealed a strong signature of a recent population expansion of P. altivelis in East Asia, estimated at 126 to 391 thousand years ago during the late Pleistocene. Therefore it suggests that the present population of P. altivelis traces back to its approximate demographic change long before the last glacial maximum. This contrasts our a priori expectation that the most recent glacial event might have the most crucial effect on the present day demography of marine organisms through bottleneck and subsequent increase of effective population size in this region.

키워드

참고문헌

  1. Alvarado Bremer JR, Vi -nas J, Mejuto J, Ely B, Pla C, 2005. Comparative phylogeography of Atlantic bluefin tuna and swordfish: the combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Molecular Phylogenetics and Evolution, 36:169-187. https://doi.org/10.1016/j.ympev.2004.12.011
  2. Atarhouch T, Ruber L, Gonzalez EG, Albert EM, Rami M, Dakkak A, Zardoya R, 2006. Signature of an early genetic bottleneck in a population of Moroccan sardines (Sardina pilchardus). Molecular Phylogenetics and Evolution, 39:373- 383. https://doi.org/10.1016/j.ympev.2005.08.003
  3. Azuma K, Takahashi I, Fujita S, Kinoshita I, 2003. Recruitment and movement of larval ayu occurring in the surfzone of a sandy beach facing Tosa Bay. Fisheries Science, 69:355- 360. https://doi.org/10.1046/j.1444-2906.2003.00629.x
  4. Bowen BW, Grant WS, 1997. Phylogeography of the Sardines (Sardinops spp.): assessing biogeographic models and population histories in temperate upwelling zones. Evolution, 51:1601-1610. https://doi.org/10.2307/2411212
  5. Bowen BW, Muss A, Rocha LA, Grant WS, 2006. Shallow mtDNA coalescence in Atlantic pygmy angelfishes (genus Centropyge) indicates a recent invasion from the Indian Ocean. Journal of Heredity, 97:1-12.
  6. Briggs JC, 1999. Coincident biogeographic patterns: Indo-West Pacific Ocean. Evolution, 53:326-335. https://doi.org/10.2307/2640770
  7. Burridge CP, Craw D, Waters JM, 2006. River capture, range expansion, and cladogenesis: the genetic signature of freshwater vicariance. Evolution, 60:1038-1049. https://doi.org/10.1111/j.0014-3820.2006.tb01181.x
  8. Chyung MK, 1977. The fishes of Korea. Il Ji Sa Publishing Co., Seoul, pp. 1-727.
  9. Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe M, 2009. The last glacial maximum. Science, 325:710-714. https://doi.org/10.1126/science.1172873
  10. Clement M, Posada D, Crandall KA, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9:1657-1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x
  11. Donaldson KA, Wilson RR Jr, 1999. Amphi-panamic geminates of snook (Percoidei: Centropomidae) provide a calibration of the divergence rate in the mitochondrial DNA control region of fishes. Molecular Phylogenetics and Evolution, 13:208-213. https://doi.org/10.1006/mpev.1999.0625
  12. Duke NC, Benzie JAH, Goodall JA, Ballment ER, 1998. Genetic structure and evolution of species in the mangrove genus Avicennia (Avicenniaceae) in the Indo-West Pacific. Evolution, 52:1612-1626. https://doi.org/10.2307/2411335
  13. Excoffier L, Laval G, Schneider S, 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1:47-50.
  14. Fu YX, 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147:915-925.
  15. Habib KA, Jeong D, Myoung JG, Kim MS, Jang YS, Shim JS, Lee YH, 2011. Population genetic structure and demographic history of the fat greenling Hexagrammos otakii. Genes and Genomics, 33:413-423. https://doi.org/10.1007/s13258-011-0059-4
  16. Han ZQ, Gao TX, Yanagimoto T, Sakurai Y, 2008. Genetic population structure of Nibea albiflora in Yellow Sea and East China Sea. Fisheries Science, 74:544-552. https://doi.org/10.1111/j.1444-2906.2008.01557.x
  17. Hewitt GM, 1996. Some genetic consequences of ice ages, and their role, in divergence and speciation. Biological Journal of the Linnean Society, 58:247-276. https://doi.org/10.1111/j.1095-8312.1996.tb01434.x
  18. Hewitt G, 2000. The genetic legacy of the Quaternary ice ages. Nature, 405:907-913. https://doi.org/10.1038/35016000
  19. Ho SYW, Larson G, 2006. Molecular clocks: when times are achangin'. Trends in Genetics, 22:79-83. https://doi.org/10.1016/j.tig.2005.11.006
  20. Ho SYW, Phillips MJ, Cooper A, Drummond AJ, 2005. Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Molecular Biology and Evolution, 22:1561-1568. https://doi.org/10.1093/molbev/msi145
  21. Iguchi K, 1996. Size-specific spawing pattern in ayu, Plecoglossus altivelis. Ichthyological Research, 43:193-198. https://doi.org/10.1007/BF02347591
  22. Iguchi K, Konishi M, Takeshima H, 2006. Early dispersal of ayu during marine stages as inferred from geographic variation in the number of vertebrae. Fisheries Science, 72:737-741. https://doi.org/10.1111/j.1444-2906.2006.01212.x
  23. Iguchi K, Nishida M, 2000. Genetic biogeography among insular populations of the amphidromous fish Plecoglossus altivelis assessed from mitochondrial DNA analysis. Conservation Genetics, 1:147-156. https://doi.org/10.1023/A:1026582922248
  24. Iguchi K, Tanimura Y, Takeshima H, Nishida M, 1999. Genetic variation and geographic population structure of amphidromous ayu Plecoglossus altivelis as examined by mitochondrial DNA sequencing. Fisheries Science, 65:63-67. https://doi.org/10.2331/fishsci.65.63
  25. Jung J, Eo HS, Rho HS, Kim W, 2008. Two genetic lineages of sea slaters, Ligia (Crustacea: Isopoda) in South Korea: a population genetic approach. Molecules and Cells, 25:523- 530.
  26. Kim IS, Choi Y, Lee CL, Lee YJ, Kim BJ, Kim JH, 2005. Illustrated book of Korean fishes. Kyo-Hak Publishing Co., Ltd., Seoul, p. 151.
  27. Kim I, Park J, 2005. Freshwater fishes of Korea. Kyo-Hak Publishing Co., Seoul, pp. 264-265.
  28. Kinoshita I, 1993. Ecological study on larvae and juveniles of sparine fishes occurring in surf zones of sandy beaches. Bulletin of Marine Sciences and Fisheries, Kochi University, 13:21-99.
  29. Kitamura A, Matsui H, Oda M, 1999. Change in the thickness of the warm Tsushima Current at the initiation of its flow into the Sea of Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 152:305-318. https://doi.org/10.1016/S0031-0182(99)00047-4
  30. Kitamura A, Takano O, Takata H, Omote H, 2001. Late Pliocene- early Pleistocene paleoceanographic evolution of the Sea of Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 172:81-98. https://doi.org/10.1016/S0031-0182(01)00272-3
  31. Kong GS, Park SC, Han HC, Chang JH, Mackensen A, 2006. Late Quaternary paleoenvironmental changes in the southeastern Yellow Sea, Korea. Quaternary International, 144: 38-52. https://doi.org/10.1016/j.quaint.2005.05.011
  32. Lecomte F, Grant WS, Dodson JJ, Rodríguez-Sánchez R, Bowen BW, 2004. Living with uncertainty: genetic imprints of climate shifts in East Pacific anchovy (Engraulis mordax) and sardine (Sardinops sagax). Molecular Ecology, 13:2169- 2182. https://doi.org/10.1111/j.1365-294X.2004.02229.x
  33. Li TG, Sun RT, Zhang DY, Liu ZX, Li Q, Jiang B, 2007. Evolution and variation of the Tsushima warm current during the late Quaternary: evidence from planktonic foraminifera, oxygen and carbon isotopes. Science in China Series D: Earth Sciences, 50:725-735. https://doi.org/10.1007/s11430-007-0003-2
  34. Liu JX, Gao TX, Zhuang ZM, Jin XS, Yokogawa K, Zhang YP, 2006. Late Pleistocene divergence and subsequent population expansion of two closely related fish species, Japanese anchovy (Engraulis japonicus) and Australian anchovy (Engraulis australis). Molecular Phylogenetics and Evolution, 40:712-723. https://doi.org/10.1016/j.ympev.2006.04.019
  35. Lourie SA, Vincent ACJ, 2004. A marine fish follows Wallace's Line: the phylogeography of the three spot seahorse (Hippocampus trimaculatus, Syngnathidae, Teleostei) in Southeast Asia. Journal of Biogeography, 31:1975-1985. https://doi.org/10.1111/j.1365-2699.2004.01153.x
  36. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J, 2000. Biodiversity hotspots for conservation priorities. Nature, 403:853-858. https://doi.org/10.1038/35002501
  37. Nei M, 1987. Molecular evolutionaly genetics. Columbia University Press, New York, pp. 1-512.
  38. Nei M, Li WH, 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76:5269-5273. https://doi.org/10.1073/pnas.76.10.5269
  39. Palumbi SR, 1997. Molecular biogeography of the Pacific. Coral Reefs, Supplement, 16:47S-52S. https://doi.org/10.1007/s003380050241
  40. Park SC, Yoo DG, Lee CW, Lee EI, 2000. Last glacial sea-level changes and paleogeography of the Korea (Tsushima) Strait. Geo-Marine Letters, 20:64-71. https://doi.org/10.1007/s003670000039
  41. Penny D, 2005. Evolutionary biology: relativity for molecular clocks. Nature, 436:183-184. https://doi.org/10.1038/436183a
  42. Rogers AR, 1995. Genetic evidence for a Pleistocene population explosion. Evolution, 49:608-615. https://doi.org/10.2307/2410314
  43. Ruzzante DE, Walde SJ, Gosse JC, Cussac VE, Habit E, Zemlak TS, Adams EDM, 2008. Climate control on ancestral population dynamics: insight from Patagonian fish phylogeography. Molecular Ecology, 17:2234-2244. https://doi.org/10.1111/j.1365-294X.2008.03738.x
  44. Schneider R, Travers A, Kutateladze T, Muskhelishvili G, 1999. A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli. Molecular Microbiology, 34:953-964. https://doi.org/10.1046/j.1365-2958.1999.01656.x
  45. Shields GF, Kocher TD, 1991. Phylogenetic relationships of North American ursids based on analysis of mitochondrial DNA. Evolution, 45:218-221. https://doi.org/10.2307/2409495
  46. Shirai SM, Kuranaga R, Sugiyama H, Higuchi M, 2006. Population structure of the sailfin sandfish, Arctoscopus japonicus (Trichodontidae), in the Sea of Japan. Ichthyological Research, 53:357-368. https://doi.org/10.1007/s10228-006-0356-0
  47. Song N, Zhang XM, Sun XF, Yanagimoto T, Gao TX, 2010. Population genetic structure and larval dispersal potential of spottedtail goby Synechogobius ommaturus in the northwest Pacific. Journal of Fish Biology, 77:388-402. https://doi.org/10.1111/j.1095-8649.2010.02694.x
  48. Suda Y, Gomyoh M, 1995. Distribution of larval and juvenile fishes and physical environment in surf zones of sandy beaches. Contributions to the Researches of Fisheries Engineering, 1:39-51.
  49. Sugama K, Haryanti, Benzie JAH, Ballment E, 2002. Genetic variation and population structure of the giant tiger prawn, Penaeus monodon, in Indonesia. Aquaculture, 205:37-48. https://doi.org/10.1016/S0044-8486(01)00662-7
  50. Tajima F, 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123:585- 595.
  51. Tajima F, 1993. Unbiased estimation of evolutionary distance between nucleotide sequences. Molecular Biology and Evolution, 10:677-688.
  52. Takahashi I, Azuma K, Fujita S, Kinoshita I, 1998. Spatial distribution of larval ayu Plecoglossus altivelis in the Shimanto estuary, Japan. Fisheries Science, 64:522-525. https://doi.org/10.2331/fishsci.64.522
  53. Tamura K, Dudley J, Nei M, Kumar S, 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24:1596- 1599. https://doi.org/10.1093/molbev/msm092
  54. Teague WJ, Jacobs GA, Perkins HT, Book JW, Chang KI, Suk MS, 2002. Low-frequency current observations in the Korea/ Tsushima Strait. Journal of Physical Oceanography, 32:1621 -1641. https://doi.org/10.1175/1520-0485(2002)032<1621:LFCOIT>2.0.CO;2
  55. Thompson JD, Higgins DG, Gibson TJ, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  56. Ujiie H, Ujiie Y, 1999. Late Quaternary course changes of the Kuroshio Current in the Ryukyu Arc region, northwestern Pacific Ocean. Marine Micropaleontology, 37:23-40. https://doi.org/10.1016/S0377-8398(99)00010-9
  57. Wang P, 1999. Response of Western Pacific marginal seas to glacial cycles: paleocenographic and sedimentological features. Marine Geology, 156:5-39. https://doi.org/10.1016/S0025-3227(98)00172-8
  58. Williams ST, Benzie JAH, 1997. Indo-West Pacific patterns of genetic differentiation in the high-dispersal starfish Linckia laevigata. Molecular Ecology, 6:559-573. https://doi.org/10.1046/j.1365-294X.1997.00221.x
  59. Williams ST, Benzie JAH, 1998. Evidence of a biogeographic break between populations of a high dispersal starfish: congruent regions within the Indo-West Pacific defined by color morphs, mtDNA, and allozyme data. Evolution, 52:87-99. https://doi.org/10.2307/2410923
  60. Williams ST, Jara J, Gomez E, Knowlton N, 2002. The marine Indo-West Pacific break: contrasting the resolving power of mitochondrial and nuclear genes. Integrative and Comparative Biology, 42:941-952. https://doi.org/10.1093/icb/42.5.941
  61. Xiang R, Yang Z, Saito Y, Fan D, Chen M, Guo Z, Chen Z, 2008. Paleoenvironmental changes during the last 8400 years in the southern Yellow Sea: benthic foraminiferal and stable isotopic evidence. Marine Micropaleontology, 67: 104-119. https://doi.org/10.1016/j.marmicro.2007.11.002
  62. Xu X, Oda M, 1999. Surface-water evolution of the eastern East China Sea during the last 36,000 years. Marine Geology, 156:285-304. https://doi.org/10.1016/S0025-3227(98)00183-2
  63. Yamamoto S, Uchida K, Sato T, Katsura K, Takasawa T, 2007. Population genetic structure and effective population size of ayu (Plecoglossus altivelis), an amphidromous fish. Journal of Fish Biology, 70:191-201. https://doi.org/10.1111/j.1095-8649.2007.01396.x
  64. Zhang J, Cai Z, Huang L, 2006. Population genetic structure of crimson snapper Lutjanus erythropterus in East Asia, revealed by analysis of the mitochondrial control region. ICES Journal of Marine Science, 63:693-704. https://doi.org/10.1016/j.icesjms.2006.01.004

피인용 문헌

  1. (Engraulididae) based on the mitochondrial DNA control region vol.25, pp.3, 2014, https://doi.org/10.3109/19401736.2013.845754
  2. Mitochondrial DNA sequence analysis from multiple gene fragments reveals genetic heterogeneity of Crassostrea ariakensis in East Asia vol.36, pp.5, 2014, https://doi.org/10.1007/s13258-014-0198-5
  3. vol.5, pp.2, 2014, https://doi.org/10.1002/ece3.1374
  4. The potential biodiversity of Ayu, as evidenced by differences in its early development and growth between Vietnam and Japan vol.97, pp.12, 2014, https://doi.org/10.1007/s10641-014-0229-8