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Abstract

In this study, we propose a new nonparametric test procedure for the multivariate data. In order to ac-

commodate the generalized alternatives for the multivariate case, we construct test statistics via-values with

some useful combining functions. Then we illustrate our procedure with an example and compare efficiency

among the combining functions through a simulation study. Finally we discuss some interesting features

related with the new nonparametric test as concluding remarks.
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1. Introduction

To compare two populations with minimal assumption or assumptions for multivariate data, one

may consider using one of nonparametric test procedures. The usual nonparametric test statistics

have a quadratic form, which is a combining function and may be appropriate for testing the null

hypothesis against the general type of alternatives. Puri and Sen (1971) have extensively studied

and proposed multivariate nonparametric tests in this direction. However one may be interested in

testing problems for the one-sided or ordered alternatives for the multivariate data. In this case,

the quadratic form of test statistics may not be adequate for this purpose and several statisticians

proposed nonparametric procedures with various approaches (Bhattacharyya and Johnson, 1970;

Boyett and Shuster, 1977). Also Park et al. (2001) proposed a nonparametric procedure for this

problem by taking the maximum value among the standardized individual test statistics; however,

one may consider to test hypotheses with combined types of alternatives. For example, for the

bivariate case, one may be interested in the two-sided alternative for the first component or alter-

natively a one-sided one for the second component and: however, (to the authors’ knowledge) any

test procedure under this scheme for alternatives has not yet been proposed.

To obtain a critical value (or more generally a p-value) for any test statistics, we have to derive the

null distribution (or at least limit the null distribution) for the statistics or combining functions.
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However, the derivation of the exact or limiting distributions would involve another derivation of

covariances among the individual test statistics that may be difficult for some cases. Then it would

be convenient to use the permutation principle (Fisher, 1925), which is a re-sampling method and

requires enormous computational works. However, this has become the usual methodology in the

applied areas of statistics with advanced computer facilities and relevant statistical software (cf.

Westfall and Young, 1993).

In this study, we propose a new nonparametric multivariate test procedure with the multiple testing

approach for the generalized types of alternatives. In the next section, we begin our discussion

by formulating generalized alternatives that may contain types of alternatives such as one- and

two-sided for each component. Then we introduce three types of useful combining functions to

construct test statistics via p-values. Then we illustrate our procedure with a numerical example

and compare efficiency among the combining functions through a simulation study. Finally we

discuss some interesting features related to our procedure.

2. Multivariate Test

Let X1, . . . ,Xm and Y1, . . . ,Yn be two independent random samples from populations with d-

variate distribution functions F and G, respectively. We assume the location translation model

for the convenience of our formulation of the generalized alternatives. In the next section, we will

briefly comment on the extension for the applications of our procedure other than the location

translation model. Since we assume the location translation model, there is a d-dimensional real

vector δ ∈ Rd such that for all x ∈ Rd,

G(x) = F (x− δ). (2.1)

Based on these samples and under the model (2.1), we assume that we are interested in testing

H0 : F = G or

H0 : δ = 0. (2.2)

However, for the alternatives, we consider vary with component to component. Therefore for each

i, i = 1, . . . , d, the alternative would be one of the following three forms:

H1i : δi ̸= 0, H1i : δi > 0 and H1i : δi < 0, (2.3)

where δi is the ith component of δ ∈ Rd. Then we may formulate the alternative corresponding to

(2.2) as follows:

H1 : ∪d
i=1H1i. (2.4)

We note that in view of the expression (2.4) for the alternative, the null hypothesis in (2.2) can be

rewritten as

H0 : ∩d
i=1H0i = ∩d

i=1 {δi = 0} . (2.5)

Under this scheme of alternatives, first of all, we choose a suitable test procedure for each component

that can be parametric or nonparametric. Let λi be the corresponding p-value for testing H0i :

{δi = 0} against any one of the three forms of alternatives in (2.3). In order to obtain an overall

p-value using these d number of λi’s for each partial test, we have to choose a combining function

to combine the individual partial tests. In the following, we introduce useful combining functions

that have been used widely in applications (Pesarin, 2001).
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(1) The Fisher omnibus combining function is based on the statistic

CF = −2
d∑

i=1

log(λi).

(2) Liptak combining function is based on the statistic

CL =

d∑
i=1

Φ−1(1− λi),

where Φ is the cumulative standard normal distribution function and Φ−1, its inverse.

(3) The Tippett combining function is given by

CT = max {1− λ1, . . . , 1− λd} .

In addition, one may consider using the quadratic form for a combining function; however, but

the quadratic form is not suitable for the one-sided alternatives. Then we may reject H0 for some

large values of any one chosen combining function. To obtain an overall p-value, we need the null

distribution for any chosen combining function; however, it would be difficult to obtain the null

distribution of any C in the exact or asymptotic sense with the theoretic approach. For this reason,

we may use the permutation principle. For the small sample case, we may obtain the exact null

distribution of C and the resulting test has been known to be exact; however, for the large sample

case (since it is difficult to consider all the configurations according to the permutation arguments

even when the computer being used) it is common to apply the permutation principle with the

Monte-Carlo approach. Then the result of the test would be asymptotic. Thus, we may complete

this nonparametric test procedure by obtaining an overall p-value based on the exact or asymptotic

permutation distribution.

For the application of the permutation principle for the multivariate case, it is important to under-

stand that we have to permute the combined data with the observational-wise not the component-

wise permutations. In this sense, we may have only (m+ n)! permutations not [(m+ n)!]d for the

whole permutational configurations. Bell and Smith (1969) characterized this permutation principle

in the multivariate case.

3. A Numerical Example, Simulation Results and Some Concluding Remarks

In order to illustrate our procedure, we consider the following data from Morrison (2004) on mea-

surements on the skull of the Eurasian wolf Canis Lupus L. For this study, we only considered

the first three characteristics(palatal and postpalatal lengths and zygomatic width) tabulated in

Table 3.1 to compare two wolf groups which are from rm(rocky mountain) and ac(arctic). We used

two kinds of test statistics for each individual test that are the two-sample t- and Wilcoxon rank

sum statistics for all characteristics with the three kinds of combining functions introduced in the

previous section. In order to obtain the individual p-values, we used the theoretical results and to

obtain the overall p-values, we used the permutation principle for both cases with the Monte-Carlo

method. The respective individual p-values and the overall p-values are tabulated in Table 3.2. In

this case, the t-tests yield more significant results and Tippett combining function(CT ) produces

the most significant result among the combining functions.
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Table 3.1. Canis L. data

No. 1 2 3 4 5 6 7 8 9 10 11 12 13

Location rm rm rm rm rm rm rm rm rm ar ar ar ar

Palatal 126 128 126 125 126 128 116 120 116 117 115 117 117

Postpalatal 104 111 108 109 107 110 102 103 103 99 100 106 101

Zygomatic 141 151 152 141 143 143 131 130 125 134 149 142 144

No. 14 15 16 17 18 19 20 21 22 23 24 25

Location ar ar ar ar ar ar ar ar ar ar ar ar

Palatal 117 119 115 117 114 110 112 109 112 112 113 107

Postpalatal 103 101 102 100 102 94 94 91 99 99 97 97

Zygomatic 149 143 146 144 141 132 134 133 139 133 146 137

Table 3.2. p-values for two test procedures

Statistics λ1 λ2 λ3 CF CL CT

t 0.00001 0.00003 0.57975 0.00009 0.00082 0.00001

Wilcoxon 0.00008 0.00002 0.62289 0.00025 0.00270 0.00002

Table 3.3. Bivariate normal with ρ = 0

Test (m,n)
δ

0.0 0.3 0.6 0.9 1.2 1.5

(10, 10) 0.036 0.199 0.519 0.804 0.964 0.997

CF (10, 20) 0.046 0.246 0.616 0.915 0.994 0.999

(20, 10) 0.044 0.248 0.667 0.913 0.991 1.000

(10, 10) 0.039 0.209 0.538 0.815 0.970 0.997

Rank-sum CL (10, 20) 0.045 0.268 0.661 0.928 0.994 1.000

(20, 10) 0.044 0.271 0.682 0.926 0.991 1.000

(10, 10) 0.031 0.159 0.380 0.687 0.893 0.982

CT (10, 20) 0.038 0.190 0.457 0.823 0.969 0.998

(20, 10) 0.043 0.197 0.537 0.849 0.973 0.998

(10, 10) 0.024 0.108 0.310 0.567 0.806 0.941

CF (10, 20) 0.041 0.189 0.454 0.758 0.942 0.986

(20, 10) 0.036 0.185 0.488 0.775 0.947 0.988

(10, 10) 0.022 0.110 0.324 0.587 0.825 0.942

Median CL (10, 20) 0.032 0.163 0.441 0.758 0.940 0.991

(20, 10) 0.026 0.160 0.450 0.765 0.937 0.986

(10, 10) 0.012 0.065 0.204 0.421 0.670 0.845

CT (10, 20) 0.026 0.095 0.238 0.495 0.739 0.907

(20, 10) 0.025 0.107 0.293 0.519 0.765 0.914

(10, 10) 0.040 0.198 0.529 0.830 0.973 0.996

CF (10, 20) 0.047 0.243 0.640 0.928 0.996 1.000

(20, 10) 0.047 0.270 0.682 0.924 0.993 1.000

(10, 10) 0.040 0.208 0.554 0.855 0.974 0.997

t CL (10, 20) 0.051 0.270 0.671 0.944 0.996 1.000

(20, 10) 0.042 0.277 0.703 0.931 0.994 1.000

(10, 10) 0.041 0.179 0.412 0.726 0.913 0.986

CT (10, 20) 0.040 0.188 0.525 0.844 0.979 0.998

(20, 10) 0.048 0.215 0.564 0.857 0.981 0.998

In order to compare the efficiency among the combining functions, CF , CL and CT , we have

conducted a simulation study. In this study, we obtained the empirical powers from the two types

of bivariate normal distributions and the Marshall-Olkin type of bivariate exponential distribution
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Table 3.4. Bivariate normal with ρ = 1/2

Test (m,n)
δ

0.0 0.3 0.6 0.9 1.2 1.5

(10, 10) 0.046 0.174 0.401 0.703 0.885 0.982

CF (10, 20) 0.043 0.200 0.499 0.826 0.960 0.997

(20, 10) 0.041 0.202 0.537 0.829 0.963 0.995

(10, 10) 0.045 0.178 0.399 0.702 0.886 0.979

Rank-sum CL (10, 20) 0.042 0.208 0.505 0.831 0.963 0.997

(20, 10) 0.040 0.205 0.543 0.828 0.962 0.995

(10, 10) 0.036 0.157 0.351 0.643 0.844 0.970

CT (10, 20) 0.040 0.179 0.439 0.770 0.937 0.993

(20, 10) 0.046 0.177 0.484 0.799 0.938 0.993

(10, 10) 0.026 0.113 0.268 0.508 0.751 0.905

CF (10, 20) 0.042 0.155 0.397 0.666 0.878 0.960

(20, 10) 0.034 0.146 0.393 0.659 0.874 0.969

(10, 10) 0.027 0.102 0.260 0.498 0.741 0.902

Median CL (10, 20) 0.038 0.145 0.366 0.658 0.872 0.967

(20, 10) 0.028 0.138 0.389 0.655 0.880 0.971

(10, 10) 0.016 0.067 0.189 0.383 0.621 0.806

CT (10, 20) 0.033 0.113 0.275 0.534 0.765 0.899

(20, 10) 0.027 0.111 0.314 0.540 0.757 0.964

(10, 10) 0.044 0.172 0.415 0.720 0.895 0.985

CF (10, 20) 0.040 0.207 0.515 0.836 0.965 0.996

(20, 10) 0.046 0.207 0.552 0.840 0.964 0.997

(10, 10) 0.046 0.175 0.418 0.726 0.904 0.985

t CL (10, 20) 0.042 0.220 0.518 0.841 0.967 0.997

(20, 10) 0.040 0.208 0.551 0.841 0.967 0.997

(10, 10) 0.038 0.171 0.390 0.669 0.872 0.975

CT (10, 20) 0.043 0.185 0.485 0.787 0.955 0.995

(20, 10) 0.050 0.190 0.508 0.813 0.946 0.994

(Barlow and Proschan, 1975). For the bivariate normal distributions, one is independent, ρ = 0

and the other, dependent with ρ = 0.5 between two components. The pseudo random numbers

for each component were generated with unit variance and the values of δi, i = 1, 2, were varied

from 0 to 1.5 by 0.3 increment for all distributions only with the case that δ1 = δ2. The results

are based on 1000 simulations and 2000 repetitions were carried out for each simulation to obtain

the distributions for all combining functions using the permutation principle. The computations

have been carried out by SAS/IML with PC version. The SAS program and various tips generating

the pseudo random numbers for the multivariate normal distributions could be obtained from the

internet. In addition, the readers may obtain the program upon the request from the authors. All

the results are summarized in Table 3.3 to Table 3.5. The tests based on t show the most efficient

performances for the normal distributions; however, the tests based on the Wilcoxon rank sum tests

yield superb performances for the Marshall-Olkin type exponential distribution. The tests based on

the median tests shows the inferiority for all cases. In addition, we note that CT obtains relatively

low empirical powers among the three combining functions for all cases.

One may construct test statistics for testing (2.2) using directly the standardized form of statistics.

Then this approach cannot accommodate the alternatives in (2.3) with the combining functions

shown in the previous section. Therefore, this is a merit of our test procedure using the individual

p-values applied to the generalized alternatives.
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Table 3.5. Marshall-Olkin type bivariate exponential

Test (m,n)
δ

0.0 0.3 0.6 0.9 1.2 1.5

(10, 10) 0.040 0.458 0.846 0.970 0.994 1.000

CF (10, 20) 0.050 0.542 0.905 0.988 0.996 1.000

(20, 10) 0.047 0.560 0.953 0.996 1.000 1.000

(10, 10) 0.044 0.441 0.822 0.962 0.991 0.999

Rank-sum CL (10, 20) 0.047 0.503 0.882 0.983 0.996 1.000

(20, 10) 0.051 0.527 0.929 0.993 1.000 1.000

(10, 10) 0.041 0.441 0.847 0.962 0.994 1.000

CT (10, 20) 0.047 0.553 0.910 0.985 0.998 1.000

(20, 10) 0.047 0.562 0.962 0.997 1.000 1.000

(10, 10) 0.028 0.280 0.684 0.933 0.950 0.999

CF (10, 20) 0.043 0.320 0.725 0.942 0.976 0.999

(20, 10) 0.042 0.408 0.916 0.995 1.000 1.000

(10, 10) 0.022 0.235 0.634 0.887 0.973 0.991

Median CL (10, 20) 0.042 0.318 0.660 0.891 0.988 0.994

(20, 10) 0.039 0.369 0.860 0.989 0.999 1.000

(10, 10) 0.017 0.215 0.619 0.804 0.913 0.978

CT (10, 20) 0.031 0.240 0.633 0.856 0.954 0.987

(20, 10) 0.036 0.371 0.901 0.995 1.000 1.000

(10, 10) 0.040 0.312 0.730 0.950 0.995 1.000

CF (10, 20) 0.049 0.447 0.870 0.985 0.997 1.000

(20, 10) 0.049 0.385 0.810 0.985 1.000 1.000

(10, 10) 0.041 0.311 0.698 0.936 0.992 1.000

t CL (10, 20) 0.052 0.424 0.841 0.977 0.996 1.000

(20, 10) 0.053 0.372 0.785 0.979 1.000 1.000

(10, 10) 0.041 0.295 0.735 0.953 0.998 1.000

CT (10, 20) 0.050 0.456 0.882 0.985 0.998 1.000

(20, 10) 0.043 0.371 0.830 0.985 1.000 1.000

In this paper, we only have confined ourselves to the location translation model. However since the

constructions of test statistics were based on the individual p-values, we may extend the consider-

ation for the applications of our procedure except for the location model (such as the scale) or the

proportional hazards.

We note that we did not derive the null distribution or an asymptotic one of the combining functions

because of the use of the permutation principle. This can be another merit of our procedure;

however, the required computational burden would be inexorably enormous if we additionally obtain

the individual p-values with the permutation principle. Therefore it would be better to obtain the

individual p-values with the theoretic approach and then apply the permutation principle to obtain

the overall p-value.

It is also possible to use the bootstrap method (Efron, 1979; Shao and Tu, 1995) to obtain an

overall p-values, which is another re-sampling method. The difference between two methods are as

follows. The permutation principle resamples without replacement and the bootstrap method, with

replacement; however, sometimes the two methods yield quite different results (Good, 2000).
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