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Abstract

A surplus process with two types of claims is considered, where Type I claims occur more frequently,

however, their sizes are smaller stochastically than Type II claims. The ruin probabilities of the sur-

plus caused by each type of claim are obtained by establishing integro-differential equations for the

ruin probabilities. The formulas of the ruin probabilities contain an infinite sum and convolutions

that make the formulas hard to be applicable in practice; subsequently, we obtain explicit formu-

las for the ruin probabilities when the sizes of both types of claims are exponentially distributed.

Finally, we show through a numerical example, that Type II claims have more impact on the ruin

probability of the surplus than Type I claims.

Keywords: Continuous time risk model, surplus process with two types of claims, ruin probability, integro-

differential equation.

1. Introduction

In this paper, we consider a variation of the classical continuous time risk model. The surplus in

the model is initially at u > 0, thereafter it increases linearly at a rate c > 0 due to incoming

premiums and decreases jumpwise due to arriving claims. There are two types of claims in the

model. Type I claims arrive according to a Poisson process of rate λ1 > 0 and sizes of claims are

i.i.d. with distribution G, meanwhile, Type II claims arrive according to another Poisson process

of rate λ2 > 0 and sizes of claims are i.i.d. with distribution H. We assume that λ1 ≥ λ2 and

distribution H is stochastically larger than distribution G. That is, Type I claims occur more

frequently, however, their sizes are smaller stochastically than Type II claims.

The surplus process of the model can be written as

U(t) = u+ ct−
N1(t)∑
i=1

Yi −
N2(t)∑
j=1

Zj ,
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Figure 1.1. A sample path of {U(t), t ≥ 0}

where U(t) is the surplus at time t > 0, N1(t) and N2(t) are the numbers of Type I and Type

II claims up to time t, Yi and Zj denote the sizes of the ith Type I and the jth Type II claims

with means µ1 and µ2, where 0 < µ1 ≤ µ2, and c = (1 + θ)(λ1µ1 + λ2µ2) is the premium rate,

where θ > 0 is the relative security loading. A sample path of the surplus process in the model is

illustrated in Figure 1.1. A ruin is said to occur if the surplus becomes zero or negative.

The ruin probabilities of the continuous time surplus process and its variations have been studied

by many authors. The studies on the ruin probability of the surplus in the classical risk model

is well summarized in Klugman et al. (2004). However, the ruin probability of the surplus even

in the classical risk model contains an infinite sum and convolutions, hence, many approximations

have been driven and well-known formulas were summarized and compared in Grandell (2000).

Dufresne and Gerber (1991) considered a continuous time risk model where the surplus process was

perturbed by diffusion and obtained the ruin probabilities. Tsai (2009) studied the ordering of the

ruin probabilities in a similar model and obtained bounds on the ruin probabilities.

Recently, the risk model where there exist different types of claims was studied by several researchers.

Chan et al. (2003) and Guo et al. (2007) studied the ruin probabilities in two-dimensional risk mod-

els. Chan et al. (2003) considered a bivariate risk model and derived a partial integro-differential

equation satisfied by the two-dimensional ruin probabilities; however, the exact solution of the

equation had not been obtained. Guo et al. (2007) considered two separate surplus processes and

obtained a bound on the ruin probability of the sum of two surplus processes and bounds on the

two-dimensional ruin probabilities of two separate surplus processes.

Li and Garrido (2005) and Lv et al. (2010) studied the ruin probabilities of the surplus in the risk

model where there are two types of claims; claims of one type arrive according to a Poisson process

and claims of the other type arrive according to a renewal process. Li and Garrido (2005) derived a

Laplace transform of the non-ruin probability and obtained explicit results when the initial surplus

is zero. Lv et al. (2010) obtained an exponential bound on the ruin probability. The formulas or

the bounds of the ruin probability of the whole surplus process in the risk models have been studied

by many authors; however, the exact ruin probabilities caused by each type of claim have not been

derived yet. We, in this paper, obtain the formulas of the ruin probabilities caused by each type of

claim by establishing integro-differential equations for the ruin probabilities.

In Section 2, we obtain the Laplace transforms of the ruin probabilities from the integro-differential

equations and find the formulas of the ruin probabilities by inverting the Laplace transforms. These
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formulas contain an infinite sum and convolutions that makes the formulas hardly applicable to real

insurance policies; subsequently, in Section 3, we obtain explicit formulas of the ruin probabilities,

when the claim sizes of both types follow independently exponential distributions. These explicit

formulas can be used as approximations to the true ruin probabilities in the case of general sizes

of Type I and Type II claims. Finally, we give a numerical example to show that Type II claims

contribute more to the ruin probability of the surplus than Type I claims, which is well recognized

in the real world.

2. Ruin Probabilities Caused by Each Type of Claim

In this section, we, obtain the exact formulas of the ruin probabilities of the surplus caused by each

type of claim, when the size distributions (G and H) of two types of claims are general. Let ψ1(u)

be the probability of the ruin caused by a Type I claim, when the initial surplus is u > 0. Observe

that the following six mutually exclusive events can occur during a small interval (0, h):

(i) no claims occur, in which case

ψ1(u) = ψ1(u+ ch)

(ii) a Type I claim occurs with Y1 ≥ u+ ch′ (h′ < h), in which case

ψ1(u) = 1

(iii) a Type II claim occurs with Z1 ≥ u+ ch′ (h′ < h), in which case

ψ1(u) = 0

(iv) a Type I claim occurs with Y1 < u+ ch′, in which case

ψ1(u) = ψ1(u+ ch′ − Y )

(v) a Type II claim occurs with Z1 < u+ ch′, in which case

ψ1(u) = ψ1(u+ ch′ − Z)

(vi) two or more claims occur; however, the probability of this event is o(h).

From these relations, we can have

ψ1(u) = {1− (λ1 + λ2)h+ o(h)}ψ1(u+ ch)

+ {λ1h+ o(h)}{1− λ2h+ o(h)}{1−G(u+ ch′)} × 1

+ {λ1h+ o(h)}{1− λ2h+ o(h)}
∫ u+ch′

0

ψ1(u+ ch′ − y)dG(y)

+ {λ2h+ o(h)}{1− λ1h+ o(h)}
∫ u+ch′

0

ψ1(u+ ch′ − z)dH(z)

+ o(h).

After some algebra, dividing both sides by ch and letting h→ 0 give the following integro-differential

equation:

−cψ′
1(u) = −(λ1 + λ2)ψ1(u) + λ1Ḡ(u) + λ1

∫ u

0

ψ1(u− y)dG(y) + λ2

∫ u

0

ψ1(u− z)dH(z), (2.1)

where Ḡ(u) = 1−G(u).
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Let ψ∗
1(s) =

∫∞
0
e−suψ1(u)du be the Laplace transform of ψ1(u). Taking the Laplace transforms

on both sides of Equation (2.1), we have

ψ∗
1(s) =

−cψ1(0) +
λ1

s
{1− g∗(s)}

−cs− λ1g∗(s)− λ2h∗(s) + λ1 + λ2
, (2.2)

where g∗(s) =
∫∞
0
e−sudG(u) and h∗(s) =

∫∞
0
e−sudH(u) are the Laplace-Stieltjes transform of G

and H, respectively. To find ψ1(0), we put s→ 0 in Equation (2.2), then the denominator of ψ∗
1(s)

goes to zero. For ψ∗
1(0) to exist, the numerator of ψ∗

1(s) should also go to zero when s → 0. This

results in ψ1(0) = λ1µ1/c, since lims→0{1− g∗(s)}/s = −g∗
′
(0) = µ1.

To find ψ1(u), we, now, invert ψ
∗
1(s). Note that ψ∗

1(s) can be written as

ψ∗
1(s) =

− λ1µ1

λ1µ1 + λ2µ2
+

λ1

λ1µ1 + λ2µ2

1

s
{1− g∗(s)}

− cs

λ1µ1 + λ2µ2
+

λ1

λ1µ1 + λ2µ2
{1− g∗(s)}+ λ2

λ1µ1 + λ2µ2
{1− h∗(s)}

.

Let Ge(u) = 1/µ1

∫ u

0
Ḡ(x)dx and He(u) = 1/µ2

∫ u

0
H̄(x)dx be the equilibrium distributions of G

and H, then it can be shown that the Laplace-Stieltjes transforms of Ge and He are given by

g∗e (s) =

∫ ∞

0

e−sudGe(u) =
1

µ1s
{1− g∗(s)} ,

h∗
e(s) =

∫ ∞

0

e−sudHe(u) =
1

µ2s
{1− h∗(s)} .

Hence, ψ∗
1(s) can be rewritten as

ψ∗
1(s) =

λ1µ1

cs
{1− g∗e (s)}

1−
(
λ1µ1 + λ2µ2

c

){
λ1µ1

λ1µ1 + λ2µ2
g∗e (s) +

λ2µ2

λ1µ1 + λ2µ2
h∗
e(s)

} .
If we represent ψ∗

1(s) as an infinite series, then

ψ∗
1(s) =

λ1µ1

c

∞∑
k=0

(
1− g∗e (s)

s

)(
λ1µ1 + λ2µ2

c

)k

×
(

λ1µ1

λ1µ1 + λ2µ2
g∗e (s) +

λ2µ2

λ1µ1 + λ2µ2
h∗
e(s)

)k

.

Now, inverting Laplace transform, ψ∗
1(s), gives

ψ1(u) =
λ1µ1

c

∞∑
k=0

(
λ1µ1 + λ2µ2

c

)k

Ḡe ◦M (k)(u), (2.3)

where ◦ denotes the Stieltjes convolution, (k) denotes the k-fold recursive Stieltjes convolution and

M(u) =
λ1µ1

λ1µ1 + λ2µ2
Ge(u) +

λ2µ2

λ1µ1 + λ2µ2
He(u).

By symmetry, we can see that the probability of the ruin caused by a Type II claim is given by

ψ2(u) =
λ2µ2

c

∞∑
k=0

(
λ1µ1 + λ2µ2

c

)k

H̄e ◦M (k)(u). (2.4)
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3. Claims with Sizes Following Exponential Distributions

In this section, we obtain explicit formulas of the ruin probabilities caused by each type of claim,

when the claim sizes of both types follow independently exponential distributions, that is, when

G(y) = 1− e−
y
µ1 , for y > 0 and H(z) = 1− e−

z
µ2 , for z > 0.

For the convenience of calculation, we, first, obtain ϕ1(u) = 1 − ψ1(u). From Equation (2.1), we

can easily see that the integro-differential equation for ϕ1(u) is given by

ϕ1(u) = −
λ2

c
+

(
λ1 + λ2

c

)
ϕ1(u) +

λ2

c
H(u)− λ1

c

∫ u

0

ϕ1(u− y)dG(y)− λ2

c

∫ u

0

ϕ1(u− z)dH(z).

Inserting G(y) = 1− e−y/µ1 and H(z) = 1− e−z/µ2 into the above equation and putting both u− y
and u− z to be x give

ϕ′
1(u) = −

λ2

µ2c
e
− u

µ2 +

(
λ1+λ2

c

)
ϕ1(u)−

λ1

µ1c
e
− u

µ1

∫ u

0

ϕ1(x)e
x
µ1 dx− λ2

µ2c
e
− u

µ2

∫ u

0

ϕ1(x)e
x
µ2 dx. (3.1)

To make Equation (3.1) solvable for ϕ1(u), we eliminate both integral terms. To eliminate the last

integral term, we differentiate Equation (3.1) with respect to u, then

ϕ′′
1 (u) =

λ2

µ2c
e
− u

µ2 +

(
λ1 + λ2

c

)
ϕ′
1(u)−

λ1

µ1c
ϕ1(u)−

λ2

µ2c
ϕ1(u)

+
λ1

µ2
1c
e
− u

µ1

∫ u

0

ϕ1(x)e
x
µ1 dx+

λ2

µ2
2c
e
− u

µ2

∫ u

0

ϕ1(x)e
x
µ2 dx. (3.2)

Multiplying Equation (3.1) by 1/µ2 and adding it with Equation (3.2) give

ϕ′′
1 (u) =

(
λ1 + λ2

c
− 1

µ2

)
ϕ′
1(u) +

(
λ1

µ2c
− λ1

µ1c

)
ϕ1(u)−

(
λ1

µ1µ2c
− λ1

µ2
1c

)
e
− u

µ1

∫ u

0

ϕ1(x)e
x
µ1 dx. (3.3)

Again, to eliminate the integral term in Equation (3.3), we differentiate Equation (3.3) with respect

to u, then

ϕ′′′
1 (u) =

(
λ1 + λ2

c
− 1

µ2

)
ϕ′′
1 (u) +

(
λ1

µ2c
− λ1

µ1c

)
ϕ′
1(u)

−
(

λ1

µ1µ2c
− λ1

µ2
1c

)
ϕ1(u) +

1

µ1

(
λ1

µ1µ2c
− λ1

µ2
1c

)
e
− u

µ1

∫ u

0

ϕ1(x)e
x
µ1 dx. (3.4)

Multiplying Equation (3.3) by 1/µ1 and adding it with Equation (3.4), we, finally, have the following

ordinary differential equation:

ϕ′′′
1 (u) =

(
λ1 + λ2

c
− 1

µ1
− 1

µ2

)
ϕ′′
1 (u) +

(
λ1

µ2c
+

λ2

µ1c
− 1

µ1µ2

)
ϕ′
1(u). (3.5)

The general solution of Equation (3.5) is known to be

ϕ′
1(u) = C1e

m1u + C2e
m2u, (3.6)

where m1 and m2 are two solutions of

m2 −
(
λ1 + λ2

c
− 1

µ1
− 1

µ2

)
m−

(
λ1

µ2c
+

λ2

µ1c
− 1

µ1µ2

)
= 0



818 Ji-Yeon Han, Seung Kyoung Choi, Eui Yong Lee

and they are(
λ1 + λ2

c
− 1

µ1
− 1

µ2

)
±

√(
λ1 + λ2

c
− 1

µ1
− 1

µ2

)2

+ 4

(
λ1

µ2c
+

λ2

µ1c
− 1

µ1µ2

)
2

.

Observe that both solutions are real, since the inside of the squared root is equal to(
λ1 − λ2

c
− 1

µ1
+

1

µ2

)2

+
4λ1λ2

c2
> 0.

To evaluate C1 and C2, put u = 0 in Equation (3.1) and Equation (3.3), while recalling that

ϕ1(0) = 1− ψ1(0) = 1− λ1µ1/c, then

ϕ′
1(0) =

(
λ1 + λ2

c

)(
1− λ1µ1

c

)
− λ2

c
,

ϕ′′
1 (0) =

{(
λ1 + λ2

c

)2

− λ1

µ1c

}(
1− λ1µ1

c

)
+
λ1λ2µ1

µ2c2
− λ1λ2 + λ2

2

c2
.

From these two boundary conditions, we can get C1 and C2, which are given by

C1 =
1

m1 −m2

{(
λ1 + λ2

c

)2

− λ1

µ1c
−
(
λ1 + λ2

c

)
m2

}(
1− λ1µ1

c

)

+
1

m1 −m2

{
λ1λ2

µ2c2
(µ1 − µ2)−

(
λ2

c

)2

+
λ2m2

c

}
,

C2 =
1

m2 −m1

{(
λ1 + λ2

c

)2

− λ1

µ1c
−
(
λ1 + λ2

c

)
m1

}(
1− λ1µ1

c

)

+
1

m2 −m1

{
λ1λ2

µ2c2
(µ1 − µ2)−

(
λ2

c

)2

+
λ2m1

c

}
.

Integrating Equation (3.6), while recalling again that ϕ1(0) = 1− λ1µ1/c, gives

ϕ1(u) =
C1

m1
(em1u − 1) +

C2

m2
(em2u − 1) +

(
1− λ1µ1

c

)
. (3.7)

Finally, ψ1(u) = 1− ϕ1(u).

By symmetry, the formula of ψ2(u) can be derived from that of ψ1(u) by interchanging λ1 and λ2,

and also µ1 and µ2. We omit the details.

Example 3.1. We numerically compare ψ1(u) and ψ2(u) to illustrate the influences of each type

of claim to the ruin probability of the surplus in the risk model. It is assumed that λ1µ1 = λ2µ2,

that is, the expected total amount brought by Type I claims per unit time is same as that amount

brought by Type II claims. Here, without loss of generality, we assume that λ1µ1 = λ2µ2 = 1. It

is also assumed that u = 10 and c = 2.5.

In Table 3.1, ψ1(u), ψ2(u) and ψ(u) are tabulated for various values of λ2 and µ2, when both λ1

and µ1 are given to be 1. Here, ψ(u) = ψ1(u) + ψ2(u) is the total ruin probability of the surplus
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Table 3.1. Ruin probabilities when λ2 and µ2 are varying (λ1 = µ1 = 1)

λ2 µ2 ψ1(u) ψ2(u) ψ(u)

1 1 0.0541 0.0541 0.1083

0.5 2 0.0632 0.1483 0.2115

0.2 5 0.0512 0.3418 0.3930

0.05 20 0.0200 0.5590 0.5790

0.01 100 0.0053 0.6428 0.6481

Table 3.2. Ruin probabilities when λ1 and µ1 are varying (λ2 = µ2 = 1)

λ1 µ1 ψ1(u) ψ2(u) ψ(u)

1 1 0.0541 0.0541 0.1083

1.5 0.67 0.0276 0.0458 0.0734

2 0.50 0.0172 0.0405 0.0577

5 0.20 0.0044 0.0302 0.0347

10 0.10 0.0018 0.0270 0.0287

Table 3.3. Ruin probabilities when λ2 and µ2 are varying (λ1 = µ1 = 1)

λ2 µ2(= α) ψ1(u) ψ2(u) ψ(u)

1 1 0.0615 0.0620 0.1235

0.5 2 0.0740 0.0935 0.1675

0.2 5 0.0560 0.2465 0.3025

0.05 20 0.0255 0.5275 0.5530

0.01 100 0.0035 0.6535 0.6570

caused by either type of claim.

We can see that ψ2(u) ≥ ψ1(u), that is, Type II claims have more impact on the ruin probability of

the surplus than Type I claims. We can also see that ψ2(u) increases rapidly as µ2 increases even

though λ2 decreases, which results in, consequently, the rapid increase of ψ(u).

In Table 3.2, ψ1(u), ψ2(u) and ψ(u) are tabulated for various values of λ1 and µ1, when both λ2

and µ2 are given to be 1.

Again, we can see that ψ2(u) ≥ ψ1(u). It can be also seen that ψ1(u) as well as ψ2(u) decrease as µ1

decreases even though λ1 increases; however, ψ2(u) decreases relatively slowly compared to ψ1(u).

These facts repeatedly show that the sizes of claims have more impact on the ruin probability of

the surplus than the frequencies of claims.

Example 3.2. Since the formulas of ψ1(u) and ψ2(u) in Equation (2.3) and Equation (2.4) contain

infinite sums and Stieltjes convolutions, it is hard to evaluate ψ1(u) and ψ2(u) when G and H are

general distributions other than exponential distributions. However, we evaluate ψ1(u) and ψ2(u)

by simulation when G and H are gamma distributions with shape parameter α and scale parameter

β = 1, to see again the influences of each type of claim to the ruin probability of the surplus. It is

also assumed that λ1µ1 = λ2µ2 = 1 to make the expected total amount brought by Type I claims

per unit time be equal to that brought by Type II claims.

ψ1(u), ψ2(u) and ψ(u) are tabulated in Table 3.3 for various values of λ2 and µ2 when λ1 = µ1 = 1

and ψ1(u), ψ2(u) and ψ(u) are tabulated in Table 3.4 for various values of λ1 and µ1 when λ2 =

µ2 = 1. Table 3.3 and Table 3.4 show very similar patterns to those in Table 3.1 and Table 3.2. That
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Table 3.4. Ruin probabilities when λ1 and µ1 are varying (λ2 = µ2 = 1)

λ1 µ1(= α) ψ1(u) ψ2(u) ψ(u)

1 1 0.0615 0.0620 0.1235

1.5 0.67 0.0355 0.0590 0.0945

2 0.50 0.0325 0.0500 0.0825

5 0.20 0.0240 0.0485 0.0725

10 0.10 0.0150 0.0460 0.0610

is, Type II claims with lower frequency but larger size have more impact on the ruin probability of

the surplus than Type I claims with higher frequency but smaller size.
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