DOI QR코드

DOI QR Code

FET 스위치를 이용한 2.6 GHz 용 SPA 안테나 설계

Design of SPA Antenna Using FET Switch for 2.6 GHz

  • 강현상 (성균관대학교 정보통신대학) ;
  • 박영일 (성균관대학교 정보통신대학) ;
  • 용환구 (성균관대학교 정보통신대학) ;
  • 김병성 (성균관대학교 정보통신대학)
  • Kang, Hyun-Sang (College of Information & Communication Engineering, SungKyunKwan University) ;
  • Park, Young-Il (College of Information & Communication Engineering, SungKyunKwan University) ;
  • Yong, Hwan-Gu (College of Information & Communication Engineering, SungKyunKwan University) ;
  • Kim, Byung-Sung (College of Information & Communication Engineering, SungKyunKwan University)
  • 투고 : 2012.08.02
  • 심사 : 2012.09.27
  • 발행 : 2012.10.31

초록

본 논문에서는 펨토셀에서 기기 간의 상호 간섭을 해결하기 위해 2.6 GHz Wimax 밴드용 switched parasitic array(SPA) 안테나를 설계하였다. 설계한 SPA 안테나는 방사체(radiator)로 동작하는 단일 급전 ${\lambda}/4$ 모노폴 안테나가 중앙에 있고, 스위칭에 따라 반사체(reflector)와 유도체(director)로 동작하는 4개의 기생소자가 이를 둘러싸고 있으며, 이들 기생소자는 개방된 모노폴이 각각 둘러싸고 있다. 본 논문에서는 기존의 PIN 다이오드가 아닌 RF FET 스위치를 사용하여 빔 조향을 함으로써 간단한 구조의 저가, 저전력 안테나를 설계하였으며, 스위치의 특성에 따른 SPA 안테나의 성능을 분석하였다. 제작한 안테나의 크기는 반지름 65 mm, 높이 35 mm이고, 2.6 GHz에서 전후방비가 15 dB 이상이며, 스위칭에 따라서 8방향으로 빔 조향이 가능하다.

In this paper, a 2.6 GHz switched parasitic array(SPA) antenna is designed to resolve the device interference in the femtocell. The designed SPA antenna structure consists of a central ${\lambda}/4$ monopole antenna as a radiator and surrounding four parasitic elements operating as a reflector or a director depending on the switching state. In addition, open state monopoles around the parasitic elements are placed to improve the directivity. The designed antenna utilizes RF FETs as switching elements instead of conventional PIN diodes, which enables beam steering with a simple structure consuming low power. To select the proper FET switch, the performance of the SPA antenna depending on the switch characteristics is analyzed. The fabricated antenna has 65 mm radius and 35 mm height, which shows about 15 dB front-back-ratio(FBR) at 2.6 GHz and enables eight-directional beam steering.

키워드

참고문헌

  1. S. L. Preston, D. V. Thiel, and J. W. Lu, "A multibeam antenna using switched parasitic and switched active elements for space-division multiple access applications", IEICE Trans. Commun., vol. E82-C, pp. 1202-1210, Jul. 1999.
  2. J. Lu, D. Ireland, and R. Schlub, "Dielectric embedded( DE-ESPAR) antenna array for wireless communications", IEEE Trans. Antennas Propag., vol. 53, pp. 2437-2443, 2005. https://doi.org/10.1109/TAP.2005.852517
  3. T. Ohira, K. Gyoda, "Electronically steerable passive array radiator antennas for low-cost analog adaptive beamforming", in Proc. IEEE Int. Conf. Phased Array Syst. Technol., pp. 101-104, 2000.
  4. T. Ohira, "Adaptive array antenna beamforming architectures as viewed by a microwave circuit designer", in Proc. Asia-Pacific Microwave Conf., Sydney, pp. 828-833, 2000.
  5. T. Ohira, K. Gyoda, "Hand-held microwave direction- of-arrival finder based on varactor-tuned analog aerial beamforming", in Proc. Asia-Pacific Microwave Conf., Taipei, Taiwan, pp. 585-588, 2001.
  6. N. Scott, O. Miles, "Diversity gain from a singleport adaptive antenna using switched parasitic elements illustrated with a wire and monopole prototype", IEEE Trans. Antennas Propag., vol. 47, pp. 1066-1070, 1999. https://doi.org/10.1109/8.777133
  7. Lu Junwei, Anthony Sark, and David Thiel, "Switched parasitic patch antenna array using thirteen hexagonal shaped elements", Antennas, Propagation and EM Theory, ISAPE 8th International Symp., pp. 42-45, 2008.
  8. Kainan Zhao, Jiawen Sun, Wenhua Chen, and Zhenghe Feng, "Effect of inter-element spacing on performance of planar switched parasitic array antenna", Microwave and Millimeter Wave Technology, ICMMT International Conf., vol. 3, pp. 1189- 1192, 2008.
  9. D. Gray, J. Lu, and D. Thiel, "Electronically steerable Yagi-Uda microstrip patch antenna array", IEEE Trans. Antennas Propag., vol. 46, no. 5, pp. 605-608, May 1998. https://doi.org/10.1109/8.668900
  10. S. L. Preston, D. v. Thiel, J. W. Lu, S. G. O' Keefe, and T. S. Bird, "Electronic beam steering using switched parasitic patch elements", Electronics Lett., 2nd, vol. 33, no. 1, pp. 7-8, Jan. 1997. https://doi.org/10.1049/el:19970048
  11. C. A. Balanis, Antenna Theory, John Wiley and Sons, Singapore, 1982.
  12. M. Wennstrom, T. Svantesson, "An antenna solution for MIMO channels : The switched parasitic antenna", IEEE International Symp. on Personal, Indoor and Mobile Radio Communications, vol. 1, pp. A-159-A-163, 2001.
  13. J. Sun, W. Chen, and Z. Feng, "A novel dielectric- supported switched parasitic antenna array", IEEE Antennas Propag. Society International Symp., pp. 2325-2328, 2006.
  14. David M. Pozar, Microwave Engineering, John Wiley & Sons, Inc, 2005.
  15. Elyas Palantei, David V. Thiel., "Symmetry problems in switched parasitic smart antennas", IEEE Antennas Propag. Society International Symp., pp. 3360-3363, 2007.