References
- Stuehr DJ, Cho HJ, Kwon NS, Weise M, Nathan CF. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein. P. Natl. Acad. Sci. USA 88: 7773-7777 (1991) https://doi.org/10.1073/pnas.88.17.7773
- Lee HJ, Kim NY, Jang MK, Son HJ, Sohn DH, Lee SH, Ryu JH. A sesquiterpene, dehydrocostus lactone, inhibits the expression of inducible nitric oxide sysnthase and TNF-alpha in LPS-activated macrophage. Planta Med. 65: 104-108 (1999) https://doi.org/10.1055/s-1999-13968
- Busse R, Mlsch A. Induction of nitric oxide synthase by cytokines in vascular smooth muscle cells. FEBS Lett. 275: 87-90 (1990) https://doi.org/10.1016/0014-5793(90)81445-T
- Bravo MJ, Nakayama K. The role of attention in different visualsearch tasks. Percept. Psychophys. 51: 465-472 (1992) https://doi.org/10.3758/BF03211642
- Werner-Felmayer G, Werner ER, Fuchs D, Hausen A, Reibnegger G, Wachter H. Tetrahydrobiopterin-dependent formation of nitrite and nitrate in murine fibroblasts. J. Exp. Med. 172: 1599-1607 (1990) https://doi.org/10.1084/jem.172.6.1599
- Lancaster JR, Hibbs JB. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. P. Natl. Acad. Sci. USA 87: 1223-1227 (1990) https://doi.org/10.1073/pnas.87.3.1223
- Stuehr DJ, Marletta MA. Mammalian nitrate biosynthesis: Mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. P. Natl. Acad. Sci. USA 82: 7738- 7742 (1985) https://doi.org/10.1073/pnas.82.22.7738
- DeRojas-Walker T, Tamir S, Ji H, Wishnok JS, Tannenbaum SR. Nitric oxide induces oxidative damage in addition to deamination in macrophage DNA. Chem. Res. Toxicol. 8: 473-477 (1995) https://doi.org/10.1021/tx00045a020
- Szab C, Zingarelli B, O'Connor M, Salzman AL. DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. P. Natl. Acad. Sci. USA 93: 1753-1758 (1996) https://doi.org/10.1073/pnas.93.5.1753
-
Weisz A, Cicatiello I, Esumi H. Regulation of the mouse inducible- type nitric oxide synthase gene promoter by interferon, bacterial lipopolysaccharide, and
$N^{G}$ -monomethyl-L-arginine. J. Biol. Chem. 316: 209-215 (1996) - Padwad Y, Ganju L, Jain M, Chanda S, Karan D, Banerjee PK, Sawhney RC. Effect of leaf extract of seabuckthorn on lipopolysaccharide induced inflammatory response in murine macrophages. Int. Immunopharmacol. 6: 46-52 (2006) https://doi.org/10.1016/j.intimp.2005.07.015
- Reissig JL, Strominger JL, Leloir LF. A modified colorimetric method for the estimation of N-acetylamino sugars. J. Biol. Chem. 217: 959-966 (1955)
- Golberg RL, Huff JP, Lenz ME, Glickman P, Katz R, Thonar EJMA. Elevated plasma levels of hyaluronate in patients with osteoarthritis and rheumatoid arthritis. Arth. Rheum. 34: 799-807 (1991) https://doi.org/10.1002/art.1780340704
- Kakehi K, Kinoshita M, Yasueda S. Hyaluronic acid: Separation and biological implications. J. Chromatogr. B 797: 347-355 (2003) https://doi.org/10.1016/S1570-0232(03)00479-3
- Yui N, Okano T, Sakurai Y. Inflammation responsive degradation of crosslinked hyaluronic acid gel. J. Control Release 22: 105- 116 (1992) https://doi.org/10.1016/0168-3659(92)90195-W
- Lopez AS, Alegre E, Díaz A, Mugueta C, Gonzalez A. Earlyresponse gene signaling is induced by angiogenic oligosaccharides of hyaluronan in endothelial cells. Inhibition by non-angiogenic, high-molecular-weight hyaluronan. Immunol. Lett. 106: 163-171 (2006) https://doi.org/10.1016/j.imlet.2006.05.008
- Sakamoto K, Yonoki Y, Kubota Y, Kuwagata M, Saito M, Nakahara T, Ishii K. Inducible nitric oxide synthase inhibitors abolished histological protection by late ischemic preconditioning in rat retina. Exp. Eye Res. 82: 512-518 (2006) https://doi.org/10.1016/j.exer.2005.08.011
- Hara MR, Cascio MB, Sawa A. GAPDH as a sensor of NO stress. Biochim. Biophys. Acta 1762: 502-509 (2006) https://doi.org/10.1016/j.bbadis.2006.01.012
- Shin MS. Comparative studies on the effects of Aralia continentalis root and Angelica pubescens root. PhD thesis, University of Kyungwon, Seongnam, Korea (2006)
- Cha BC, Lee EH, Cho JY. Glutathione S-transferase activity and hyaluronidase inhibitory effect of medicinal plants. Korean J. Physiol. Pharmacol. 35: 184-188 (2004)
- Kushwah A, Amma MK, Sareen KN. Effect of some anti-inflammatory agents on lysosomal & testicular hyaluronidases. Indian J. Exp. Biol. 16: 222-224 (1978)
- Santos-Gomes PC, Seabra RM, Andrade PB, Fernandes-Ferreira M. Determination of phenolic antioxidant compounds produced by calli and cell suspensions of sage (Salvia officinalis L.). J. Plant Physiol. 160: 1025-1032 (2003) https://doi.org/10.1078/0176-1617-00831
- Tesuka Y, Irikawa S, Kaneko T, Banskota AH, Nagaoka T, Xiong Q, Hase K, Kadota S. Screening of Chinese herval drug extracts for inhibitory activity on nitric oxide production and identification of an active compound of Zanthoxylum bugeanum. J. Ethnopharmacol. 77: 209-217 (2001) https://doi.org/10.1016/S0378-8741(01)00300-2
Cited by
- Seven Cases of Wart treated with MY1-Hwan vol.39, pp.4, 2018, https://doi.org/10.13048/jkm.18045