DOI QR코드

DOI QR Code

Inhibitory Effects of Aralia cordata Thunb Extracts on Nitric Oxide Synthesis in RAW 264.7 Macrophage Cells

독활(Aralia cordata Thunb) 추출물의 Nitric Oxide Synthesis 저해효과

  • Kang, Chang-Ho (Department of Biological Engineering, Inha University) ;
  • Koo, Ja-Ryong (Department of Biological Engineering, Inha University) ;
  • So, Jae-Seong (Department of Biological Engineering, Inha University)
  • Received : 2012.01.26
  • Accepted : 2012.07.03
  • Published : 2012.10.31

Abstract

Assessment was made of the effects of Aralia cordata Thunb (DH) on the cell proliferation, inducible nitric oxide synthase (iNOS) mRNA gene expression and nitric oxide (NO) production in RAW 264.7 macrophage cells. For the screening of anti-inflammatory activities, ethanolic extracts of 55 species of traditional herbal medicines were examined for inhibitory effects, and it was confirmed that DH possessed inhibitory effects on NO production. As a result, DH significantly decreased the production of NO and iNOS gene expression at a concentration of $250{\mu}g/mL$. The chloroformsoluble fractionates have the strongest No synthesis inhibitory effect. It is presumed that the inhibition of NO production in LPS-stimulated RAW 264.7 cells by DH components occurred via the modulation of iNOS and DH, and that the active compound from DH may be useful for therapeutic management of inflammatory-associate diseases.

항염증효과가 있는 기능성 식품 및 의약품 소재의 개발을 위하여 천연 식물 자원으로부터 NOS 저해 활성 물질을 분리하고 그 이화학적인 특성에 대해 알아보기 위해 항염증 효과가 있다고 알려져 있는 58가지의 생약재에서 NO 저해효과를 확인해 본 결과 독활에서 80% 이상의 높은 저해활성을 가진 것을 알 수 있었다. 독활 생약재 에탄올 추출물에서 n-hexane, chloroform, ethyl acetate, n-butanol, water 순으로 용매 분획을 실시한 후 NO 생성 저해 활성을 측정한 결과, chloroform 분획에서 가장 높은 저해 활성을 보여 최종 분리 시료로 선정하였으며, open column chromatography(silica gel, $C_{18}$)를 이용하여 최종적인 활성 물질(AC8-MV)을 분리할 수 있었다. 분리한 활성 물질(AC8-MV)의 순도를 확인하기 위하여 analytical HPLC와 LC-ESI-mass spectrum를 분석한 결과 순수한 단일 물질로 분리 되었음을 확인할 수 있었으며, 차후 nuclear magnetic resonance spectrometer(NMR)를 통해 구조분석을 실시할 것이다. 또한 AC8-MV와 NO저해효과가 유의적으로 차이가 없던 AC8-MVI 활성물질에 대한 순도 및 구조분석을 연구할 것이다. 이를 통해 독활로부터 분리한 활성물질(AC8-MV)이 NO inhibitor 로서 일반 항염증 약물 및 기능성 식품 소재로 실용화될 수 있는 가능성을 시사하였다.

Keywords

References

  1. Stuehr DJ, Cho HJ, Kwon NS, Weise M, Nathan CF. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein. P. Natl. Acad. Sci. USA 88: 7773-7777 (1991) https://doi.org/10.1073/pnas.88.17.7773
  2. Lee HJ, Kim NY, Jang MK, Son HJ, Sohn DH, Lee SH, Ryu JH. A sesquiterpene, dehydrocostus lactone, inhibits the expression of inducible nitric oxide sysnthase and TNF-alpha in LPS-activated macrophage. Planta Med. 65: 104-108 (1999) https://doi.org/10.1055/s-1999-13968
  3. Busse R, Mlsch A. Induction of nitric oxide synthase by cytokines in vascular smooth muscle cells. FEBS Lett. 275: 87-90 (1990) https://doi.org/10.1016/0014-5793(90)81445-T
  4. Bravo MJ, Nakayama K. The role of attention in different visualsearch tasks. Percept. Psychophys. 51: 465-472 (1992) https://doi.org/10.3758/BF03211642
  5. Werner-Felmayer G, Werner ER, Fuchs D, Hausen A, Reibnegger G, Wachter H. Tetrahydrobiopterin-dependent formation of nitrite and nitrate in murine fibroblasts. J. Exp. Med. 172: 1599-1607 (1990) https://doi.org/10.1084/jem.172.6.1599
  6. Lancaster JR, Hibbs JB. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. P. Natl. Acad. Sci. USA 87: 1223-1227 (1990) https://doi.org/10.1073/pnas.87.3.1223
  7. Stuehr DJ, Marletta MA. Mammalian nitrate biosynthesis: Mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. P. Natl. Acad. Sci. USA 82: 7738- 7742 (1985) https://doi.org/10.1073/pnas.82.22.7738
  8. DeRojas-Walker T, Tamir S, Ji H, Wishnok JS, Tannenbaum SR. Nitric oxide induces oxidative damage in addition to deamination in macrophage DNA. Chem. Res. Toxicol. 8: 473-477 (1995) https://doi.org/10.1021/tx00045a020
  9. Szab C, Zingarelli B, O'Connor M, Salzman AL. DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. P. Natl. Acad. Sci. USA 93: 1753-1758 (1996) https://doi.org/10.1073/pnas.93.5.1753
  10. Weisz A, Cicatiello I, Esumi H. Regulation of the mouse inducible- type nitric oxide synthase gene promoter by interferon, bacterial lipopolysaccharide, and $N^{G}$-monomethyl-L-arginine. J. Biol. Chem. 316: 209-215 (1996)
  11. Padwad Y, Ganju L, Jain M, Chanda S, Karan D, Banerjee PK, Sawhney RC. Effect of leaf extract of seabuckthorn on lipopolysaccharide induced inflammatory response in murine macrophages. Int. Immunopharmacol. 6: 46-52 (2006) https://doi.org/10.1016/j.intimp.2005.07.015
  12. Reissig JL, Strominger JL, Leloir LF. A modified colorimetric method for the estimation of N-acetylamino sugars. J. Biol. Chem. 217: 959-966 (1955)
  13. Golberg RL, Huff JP, Lenz ME, Glickman P, Katz R, Thonar EJMA. Elevated plasma levels of hyaluronate in patients with osteoarthritis and rheumatoid arthritis. Arth. Rheum. 34: 799-807 (1991) https://doi.org/10.1002/art.1780340704
  14. Kakehi K, Kinoshita M, Yasueda S. Hyaluronic acid: Separation and biological implications. J. Chromatogr. B 797: 347-355 (2003) https://doi.org/10.1016/S1570-0232(03)00479-3
  15. Yui N, Okano T, Sakurai Y. Inflammation responsive degradation of crosslinked hyaluronic acid gel. J. Control Release 22: 105- 116 (1992) https://doi.org/10.1016/0168-3659(92)90195-W
  16. Lopez AS, Alegre E, Díaz A, Mugueta C, Gonzalez A. Earlyresponse gene signaling is induced by angiogenic oligosaccharides of hyaluronan in endothelial cells. Inhibition by non-angiogenic, high-molecular-weight hyaluronan. Immunol. Lett. 106: 163-171 (2006) https://doi.org/10.1016/j.imlet.2006.05.008
  17. Sakamoto K, Yonoki Y, Kubota Y, Kuwagata M, Saito M, Nakahara T, Ishii K. Inducible nitric oxide synthase inhibitors abolished histological protection by late ischemic preconditioning in rat retina. Exp. Eye Res. 82: 512-518 (2006) https://doi.org/10.1016/j.exer.2005.08.011
  18. Hara MR, Cascio MB, Sawa A. GAPDH as a sensor of NO stress. Biochim. Biophys. Acta 1762: 502-509 (2006) https://doi.org/10.1016/j.bbadis.2006.01.012
  19. Shin MS. Comparative studies on the effects of Aralia continentalis root and Angelica pubescens root. PhD thesis, University of Kyungwon, Seongnam, Korea (2006)
  20. Cha BC, Lee EH, Cho JY. Glutathione S-transferase activity and hyaluronidase inhibitory effect of medicinal plants. Korean J. Physiol. Pharmacol. 35: 184-188 (2004)
  21. Kushwah A, Amma MK, Sareen KN. Effect of some anti-inflammatory agents on lysosomal & testicular hyaluronidases. Indian J. Exp. Biol. 16: 222-224 (1978)
  22. Santos-Gomes PC, Seabra RM, Andrade PB, Fernandes-Ferreira M. Determination of phenolic antioxidant compounds produced by calli and cell suspensions of sage (Salvia officinalis L.). J. Plant Physiol. 160: 1025-1032 (2003) https://doi.org/10.1078/0176-1617-00831
  23. Tesuka Y, Irikawa S, Kaneko T, Banskota AH, Nagaoka T, Xiong Q, Hase K, Kadota S. Screening of Chinese herval drug extracts for inhibitory activity on nitric oxide production and identification of an active compound of Zanthoxylum bugeanum. J. Ethnopharmacol. 77: 209-217 (2001) https://doi.org/10.1016/S0378-8741(01)00300-2

Cited by

  1. Seven Cases of Wart treated with MY1-Hwan vol.39, pp.4, 2018, https://doi.org/10.13048/jkm.18045