DOI QR코드

DOI QR Code

Generalized Sidelobe Canceler for TPMS Interference Cancellation

TPMS 간섭제거를 위한 Generalized Sidelobe Canceler

  • 박철 (조선대학교 대학원 첨단부품소재공학과) ;
  • 황석승 (조선대학교 공과대학 메카트로닉스공학과)
  • Received : 2012.07.12
  • Accepted : 2012.10.08
  • Published : 2012.10.25

Abstract

A TPMS(Tire Pressure Monitoring System) is a wireless communication system designed to monitor the pressure and temperature of pneumatic tires of a vehicle. In order to provide the aid in protecting a driver, this system reports tire pressure information to the driver of the vehicle. Since the wireless communication technique should be employed to transmit the TPMS data from each tire to signal processing unit in the vehicle, it suffers from interference signals from external electrical or electronics equipments. In this paper, we propose the TPMS interference cancellation technique based on GSC(Generalized Sidelobe Canceler), which does not have only the excellent performance like MVDR(Minimum-Variance-Distortionless-Response) but also has the low computational complexity comparing with MVDR. The performance of interference suppression is conformed by computer simulation examples.

차량의 각 타이어에 부착된 센서에서 압력과 온도 등을 측정하여 측정된 데이터를 차량의 무선 수신기에 전송하여 디스플레이에 타이어의 상태를 표시하는 TPMS(Tire Pressure Monitoring System)는 차량의 운행 또는 정지 중에 타이어의 상태를 수시로 점검하여 운전자에게 타이어 상태정보를 제공하는 안전보조 장치이다. TPMS는 각 타이어에서 측정되는 데이터를 전송하기위해 무선통신을 이용하는데, 정확한 데이터 전송을 방해하는 외부 전기 및 전자장치에 의한 간섭이 존재할 수 있다. 본 논문에서는 정확한 데이터 전송에 영향을 주는 간섭을 제거하고 MVDR(Minimum-Variance Distortionless-Response) 보다 낮은 복잡도를 가지는 GSC(Generalized Sidelobe Canceler) 기반의 TPMS 간섭제거 방식을 제안한다. 컴퓨터 시뮬레이션을 통하여 본 논문에서 제안된 간섭제거 기술의 성능을 확인한다.

Keywords

References

  1. B. Kim, "A Study on the Design of decision logic for Tire Pressure Monitoring System," KAIS, vol. 7, no. 3, pp. 285-290, June 2006.
  2. J. Chun and P. Cho, "Technical Trend of Tire Pressure Monitoring System", Electronics and Telecommunications Trends vol. 20, no. 6, pp. 167-177, Dec. 2005.
  3. Liuxi Tan, Sheng Liu, Honghai Zhang, Zhiying Gan, and Cheng Chen, "Numerical Analysis of the Reliability of Tire Pressure Monitoring System Installed on Wheel Hub with Glue," Electronic Packaging Technology, 2006. ICEPT, Shanghai, Aug. 2006.
  4. Mark L. Shaw, "Considerations to Improve Battery Life in Direct Tire Pressure Monitoring," SAE 2002 World Congress & Exhibition, Detroit, MI, USA, Mar. 2002.
  5. M. Brzeska, and G. A. Chakam, "RF Modelling and Characterization of a Tyre Pressure Monitoring System," in Proc. EuCAP 2007, Edinburgh, Nov. 2007.
  6. M. Brzeska, J. Pontes, G. A. Chakam, and W. Wiesbeck, "RF-Design Characterization and Modelling of Tyre Pressure Sensors," in Proc. EuCAP 2007, Edinburgh, Nov. 2007.
  7. 정보통신부, "차량용 주파수 분배방안", 차량용 주파수분배 공청회, July 2005.
  8. C. Park, S. Kim, and S. Hwang, "Interference Suppression Based on Switching Beamforming for TPMS,", The Journal of The Korea Institute of Electronic Communication Sciences, vol. 21, no. 4, pp. 436-441, 2011.
  9. C. Park, and S. Hwang, "MVDR beamformer based on the AOA for TPMS" in Proc. The Korea Institute of Electronic Communication Sciences, vol. 5, no. 1, pp. 244-249, June 2011.
  10. S. Jeong, and S. Lee, "Multi-channel input-based non-stationary noise cenceller for mobile devices", The Journal of The Korea Institute of Electronic Communication Sciences, vol. 17, no. 7 , Dec. 2007.
  11. B. Widrow and M. Kamenetsky, "On the Statistical Efficiency of the LMS Family of Adaptive Algorithms," Neural Networks 2003, vol. 4, pp. 2872-2880, July 2003.
  12. K. M. Buckley and L. J. Griffiths, "An adaptive generalized sidelobe canceller with derivative constraints," IEEE Trans. on Antennas and Propagation, vol. 34, no. 3, pp. 311-319, March 1986. https://doi.org/10.1109/TAP.1986.1143832
  13. John G. Proakis, Masoud Salehi, and Gerhard Bauch, Contemporary Communication Systems using MATLAB and Simulink, Brooks/Cole Publishing Company, June 2003.
  14. R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays, New York: Wiley, 1980.
  15. S. Hwang and J. J. Shynk, "Multicomponent Receiver Architectures for GPS Interference Suppression," IEEE Transactions on Aerospace and Electronic Systems, vol. 42, pp. 489-502 Apr. 2006. https://doi.org/10.1109/TAES.2006.1642566
  16. B. Widrow and S. D. Stearns, Adaptive Signal Processing. Englewood Cliffs, NJ:Prentice-Hall, 1985.
  17. J. Choi, "Reverse Filtering of Sound Field by Adaptive Filter and Neural Network", The Journal of The Korea Institute of Electronic Communication Sciences, vol. 5, no. 2, pp. 145-151, 2010
  18. M.Chelaru, H.N.Teodorescu, and C.Dumitrascu, "A FUZZY LMS ALGORITHM," in Proc. International Conference on Fuzzy Logic & Neural Networks I IZUKA 90, vol. 1, pp. 107-110, July 1990.
  19. J.S Goldstein, I.S.Reed, and L. L. Scharf, "A multistage representation of the Wiener filter based on orthogonal projections," IEEE Treans. on Information Theory, vol, 44, pp. 2943-2959, Nov. 1998. https://doi.org/10.1109/18.737524
  20. J. An and B. Champagne, "GSC realisations using the two-dimensional transform-domain LMS algorithm," Radar, Sonar and Navigation, IEEE Proceedings, vol. 141, no. 5, pp. 270-278, Oct. 1994. https://doi.org/10.1049/ip-rsn:19941411
  21. Wei Shao and Wei-cheng Wang, "A New GSC based MVDR Beamformer with CSLMS Algorithm for Adaptive Weights Optimization," 2011 4th International Congress on Image and Signal Processing, vol. 5, pp. 2299-2302, Oct. 2011.
  22. Guerreiro, A.M.G., Neto, A.D.D., and Lisboa, F.A., "Beamforming applied to an Adaptive Planar Array," Radio and Wireless Conference, 1998. RAWCON 98, pp. 209-212, Aug. 1998.