Contrast Enhanced Cerebral MR Venography: Comparison between Arterial and Venous Triggering Methods

조영 증강 자기공명정맥 촬영술에서의 동맥과 정맥 triggering 방법의 비교

  • Jang, Min-Ji (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Choi, Hyun-Seok (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Jung, So-Lyung (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Ahn, Kook-Jin (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Kim, Bum-Soo (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea)
  • 장민지 (가톨릭대학교 의과대학 서울성모병원 영상의학과) ;
  • 최현석 (가톨릭대학교 의과대학 서울성모병원 영상의학과) ;
  • 정소령 (가톨릭대학교 의과대학 서울성모병원 영상의학과) ;
  • 안국진 (가톨릭대학교 의과대학 서울성모병원 영상의학과) ;
  • 김범수 (가톨릭대학교 의과대학 서울성모병원 영상의학과)
  • Received : 2012.06.26
  • Accepted : 2012.08.13
  • Published : 2012.08.31

Abstract

Purpose : To compare the arterial and venous detection sites of triggering methods in contrast-enhanced-MR-venography (CE-MRV) for the evaluation of intracranial venous system. Materials and Methods: 41 healthy patients underwent CE-MRV with autotriggering at either the cavernous segment of internal carotid artery with an inserted time-delay of 6 seconds (n = 20) or the superior sagittal sinus without any timedelay (n = 21). 0.1 mmol/kg gadolinium-based contrast material ($Magnevist^{(R)}$, Schering, Germany) was intravenously injected by hand injection. A sagittal fast-spoiled-gradient-echo-sequence ranging from one ear to the other was performed (TR/TE5.2/1.5, Matrix $310{\times}310$, 124 sections in the 15-cm-thick volume). 17 predefined venous structures were evaluated on all venograms by two neuroradiologists and defined as completely visible, partially visible, or none visible. Results: The rate of completely visible structures were 272 out of 323 (84%) in the arterial triggering CE-MRV and 310 out of 340 (91%) in the venous triggering CE-MRV. The venous triggering CE-MRV demonstrated an overall superior visualization of the cerebral veins than the arterial triggering CE-MRV (Fisher exact test, p < 0.006). Conclusion: CE-MRV using venous autotriggering method provides higher-quality images of the intracranial venous structures compared to that of arterial.

목적: 뇌내 정맥혈관을 평가하기 위한 조영 증강 자기공명 정맥촬영술의 arterial trigger 와 venous trigger 방법으로 시행한 영상의 차이점을 비교 분석하고자 한다. 대상과 방법: 건강검진을 목적으로 자기공명정맥촬영술을 시행한 41명의 환자들을 대상으로 해면부위의 내경 동맥에서 arterial triggering하여 6초 후에 얻은 영상 (n = 20) 과 상시상 정맥동에서 venous triggering (n = 21) 방법으로 시행한 영상을 후향적으로 분석하였다. 영상은 가돌리늄 조영제 ($Magnevist^{(R)}$, Schering, Germany)를 0.1 mmol/kg 정맥주입하여 시행하였고, 두개강 전반에 대하여 시상영상을 fast spoiled gradiend echo sequence로 시행하였다 (TR/TE 5.2/1.5, matrix $310{\times}310$, 절편수 124 절편, 두께 15 cm). 두 그룹의 영상을 해부학적 정맥 혈관 구조에 따라 17 정맥구역에 대하여 평가하였고, 정맥의 영상품질은 세 단계 (안보임, 일부 보임, 완전히 보임)로 나눠서 평가하였다. 결과: 정맥이 완전히 보인 구역은 arterial triggering 자기공명 정맥 촬영술에서 84% (272/323), venous triggering 자기 공명 정맥촬영술에서 91% (310/340) 이다. Venous triggering 자기공명촬영술과 arterial 자기 공명 정맥촬영술을 비교하였을 때 뇌내 정맥 구조를 평가하는데 있어 venous triggering 방법이 통계적으로 유의하게 높았다 (Fisher exact test, p<0.006). 결론: 조영 증강 자기공명 정맥 촬영술은 정맥 혈관 구조에 대한 고화질의 이미지를 제공하였고 arterial triggering 방법보다 venous triggering 방법이 뇌내 정맥 구조 평가에 우월한 것으로 나타났다.

Keywords

References

  1. Farb RI. The dural venous sinuses: normal intraluminal architecture defined on contrast-enhanced MR venography. Neuroradiology 2007;49:727-732
  2. Farb RI, Scott JN, Willinsky RA, Montanera WJ, Wright GA, terBrugge KG. Intracranial venous system: gadoliniumenhanced three-dimensional MR venography with autotriggered elliptic centric-ordered sequence--initial experience. Radiology 2003;226:203-209
  3. Kirchhof K, Welzel T, Jansen O, Sartor K. More reliable noninvasive visualization of the cerebral veins and dural sinuses: comparison of three MR angiographic techniques. Radiology 2002;224:804-810
  4. Liang L, Korogi Y, Sugahara T, et al. Evaluation of the intracranial dural sinuses with a 3D contrast-enhanced MP-RAGE sequence: prospective comparison with 2D-tof MR venography and digital subtraction angiography. AJNR Am J Neuroradiol 2001;22:481-492
  5. Lovblad KO, Schneider J, Bassetti C, et al. Fast contrastenhanced MR whole-brain venography. Neuroradiology 2002;44:681-688
  6. Meckel S, Glucker TM, Kretzschmar M, Scheffler K, Radu EW, Wetzel SG. Display of dural sinuses with time-resolved, contrast-enhanced three-dimensional MR venography. Cerebrovasc Dis 2008;25:217-224
  7. Mermuys KP, Vanhoenacker PK, Chappel P, Van Hoe L. Threedimensional venography of the brain with a volumetric interpolated sequence. Radiology 2005;234:901-908
  8. Rollins N, Ison C, Reyes T, Chia J. Cerebral MR venography in children: comparison of 2D time-of-flight and gadoliniumenhanced 3D gradient-echo techniques. Radiology 2005;235: 1011-1017
  9. Wetzel SG, Law M, Lee VS, Cha S, Johnson G, Nelson K. Imaging of the intracranial venous system with a contrastenhanced volumetric interpolated examination. Eur Radiol 2003;13:1010-1018
  10. Klingebiel R, Bauknecht HC, Bohner G, Kirsch R, Berger J, Masuhr F. Comparative evaluation of 2D time-of-flight and 3D elliptic centric contrast-enhanced MR venography in patients with presumptive cerebral venous and sinus thrombosis. Eur J Neurol 2007;14:139-143
  11. Leach JL, Wolujewicz M, Strub WM. Partially recanalized chronic dural sinus thrombosis: findings on MR imaging, timeof- flight MR venography, and contrast-enhanced MR venography. AJNR Am J Neuroradiol 2007;28:782-789
  12. Bozzao A, Finocchi V, Romano A, et al. Role of contrastenhanced MR venography in the preoperative evaluation of parasagittal meningiomas. Eur Radiol 2005;15:1790-1796
  13. Mattle HP, Wentz KU, Edelman RR, et al. Cerebral venography with MR. Radiology 1991;178:453-458
  14. Kanal E, Shellock FG, Talagala L. Safety considerations in MR imaging. Radiology 1990;176:593-606
  15. Talagala SL, Jungreis CA, Kanal E, et al. Fast three-dimensional time-of-flight MR angiography of the intra-cranial vasculature. J Magn Reson Imaging 1995;5:317-323
  16. Liauw L, van Buchem MA, Spilt A, et al. MR angiography of the intracranial venous system. Radiology 2000;214:678-682
  17. Farb RI, Scott JN, Willinsky RA, Montanera WJ, Wright GA, terBrugge KG. Intracranial venous system: gadoliniumenhanced three-dimensional MR venography with autotriggered elliptic centric-ordered sequence-initial experience. Radiology 2003;226:203-209
  18. Fu JH, Lai PH, Hsiao CC, et al. Comparison of real-time threedimensional gadolinium-enhanced elliptic centric-ordered MR venography and two-dimensional time-of-flight MR venography of the intracranialvenous system. J Chin Med Assoc 2010;73:131-138
  19. Marcello M, Vincenzo BM, Orlando DD, et al. Multiple sclerosis: cerebral circulation time. Radiology 2012;262:947-955