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Gene set analysis (GSA) is useful in interpreting a genome-wide association study (GWAS) result in terms of biological 
mechanism. We compared the performance of two different GSA implementations that accept GWAS p-values of single 
nucleotide polymorphisms (SNPs) or gene-by-gene summaries thereof, GSA-SNP and i-GSEA4GWAS, under the same settings 
of inputs and parameters. GSA runs were made with two sets of p-values from a Korean type 2 diabetes mellitus GWAS study: 
259,188 and 1,152,947 SNPs of the original and imputed genotype datasets, respectively. When Gene Ontology terms were 
used as gene sets, i-GSEA4GWAS produced 283 and 1,070 hits for the unimputed and imputed datasets, respectively. On the 
other hand, GSA-SNP reported 94 and 38 hits, respectively, for both datasets. Similar, but to a lesser degree, trends were 
observed with Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets as well. The huge number of hits by 
i-GSEA4GWAS for the imputed dataset was probably an artifact due to the scaling step in the algorithm. The decrease in hits 
by GSA-SNP for the imputed dataset may be due to the fact that it relies on Z-statistics, which is sensitive to variations in the 
background level of associations. Judicious evaluation of the GSA outcomes, perhaps based on multiple programs, is 
recommended.
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Introduction

Gene set analysis (GSA) is useful in understanding the 
biological mechanisms underneath a phenotype by assessing 
the overall evidence of association of variations in an entire 
set of genes with a disease or a quantitative trait. GSA has 
recently been used to investigate many common diseases as 
an approach for the secondary analysis of a genome-wide 
association study (GWAS) result [1-3]. Currently, several 
software tools for GSA are available: GSA-SNP [4], 
i-GSEA4GWAS [5], GSEA-SNP [6], GeSBAP [7], and so on. 

GSA-SNP is useful only when p-values of the single 
nucleotide polymorphism (SNP) markers are available. 
While GSA-SNP has implemented several options for 
estimating the significance of a gene set, its implementation 
of Z-statistics may be the most convenient. Other methods 

require permuted p-values that are obtained from sample 
permutation trials; this requires lengthy computation runs. 
The Z-statistics method accepts only one set of unpermuted 
original p-values and compares the score of a gene set against 
the background distribution made by all the genes; these 
p-values should be readily available for a typical GWAS. 
Similarly, i-GSEA4GWAS also uses only the original set of 
p-values and thus is as convenient as GSA-SNP. Instead of 
sample permutation, it estimates the significance of a gene 
set via SNP permutation [8]. One of its unique features is a 
scaling step that emphasizes the gene sets that are enriched 
with strongly associated genes. 

Often, these approaches give different results in terms of 
the number of gene set hits. Hence, we compared these two 
methods using the same dataset while controlling the input 
parameters as much as possible. Here, we reanalyzed the 
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Table 1. The number of gene set hits identified by gene set analyses

Software Gene scorea
GO KEGG

Unimputed Imputed Unimputed Imputed

i-GSEA4GWAS Best 283 1,070 12 78
GSA-SNP Best  61    27 14  9

Second best  94    38 20 19

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSA, gene set analysis; SNP, single nucleotide polymorphism.
aEither the best or second-best p-value of SNPs residing inside or within 20 kb of the gene boundary was assigned to each gene
as the score. Unlike i-GSEA4GWAS, which assigns the best p-value, GSA-SNP has an option to assign the second-best p-value.

type 2 diabetes mellitus (T2DM) GWAS results for the 
Korean population against the Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway databases. The GWAS has been done with both the 
original unimputed and imputed genotypes. A large 
discrepancy in the number of significant gene set hits was 
observed between the two programs as well as the gene set 
databases. We also observed that the results were strongly 
affected by imputation.

Methods
Genotyping, imputation, and GWAS

Korean samples used in the East Asian T2DM meta- 
analysis have been described by Cho et al. [9]. The samples 
included 1,042 cases with T2DM and 2,943 controls from 
the Korea Association Resource (KARE) project that were 
recruited from Ansan and Ansung population-based 
cohorts, aged 40 to 69. We used the p-values of both the 
original unimputed (259,188 SNPs) and imputed (1,152,947 
SNPs) genotypes, based on Affymetrix Genome-Wide 
Human SNP array 5.0 (Affymetrix, Santa Clara, CA, USA), 
that were made by removing samples and markers that failed 
a quality control test [10]. SNP imputation has been 
described by Cho et al. [9]. Briefly, IMPUTE, MACH, and 
BEAGLE were used, together with haplotype reference 
panels from the Japanese (JPT) and Han Chinese (CHB) 
samples that are available in the HapMap database on the 
basis of HapMap build 36.

GSA-SNP and i-GSEA4GWAS

The GO database was downloaded from the Gene 
Ontology Consortium (12,902 terms) [11], and the KEGG 
pathway database was downloaded from the KEGG (311 
terms) [12]. 

For both databases, only the gene sets having 10-200 
member genes were used (3534 GO and 211 KEGG terms). 
For both GSA-SNP and i-GSEA4GWAS, 20-kb padding was 
added to both ends of each gene. Usually, these methods, like 

i-GSEA4GWAS, pick up the best p-value and assign it to the 
encompassing gene. On the contrary, GSA-SNP allows one 
to choose different schemes for assigning the SNP p-values 
to each gene: either the best or the second best p-value 
within the gene boundary. Choosing the second best p-value 
has been recommended, as it may reduce the false positive 
associations with little loss of sensitivity [4]. 

For GSA-SNP, we downloaded the standalone program (as 
of Jan. 2011) and executed it locally. For i-GSEA4GWAS, we 
used the web server version by uploading the SNP p-values. 
GSA-SNP allows several approaches of evaluating gene set 
significance. While other approaches require p-values from 
permutation tests, Z-standardization requires no permuted 
p-values. The score of a gene is defined as -log of the p-value 
assigned to the gene. For each gene set, the scores of its 
member genes are averaged, and the Z-statistics of these 
scores are used to estimate the significance under the 
assumption of a normal distribution. The effect of multiple 
testing is corrected by the false discovery rate (FDR) method 
[13]. On the other hand, i-GSEA4GWAS compares the 
distribution of the member gene scores of a gene set to all the 
genes using K-S statistics and corrects the multiple testing 
effect using FDR that is based on SNP permutation tests. 
Variation in the number of member genes among gene sets is 
taken care of by multiplying a ratio of ‘highly significant’ 
genes in a gene set relative to those among all genes. Here, 
the ‘highly significant’ genes are defined as the genes that 
map with at least one of the top 5% of all SNPs in the dataset.

Results

The performance of GSA-SNP and i-GSEA4GWAS looked 
quite different in terms of the number of hits (Table 1). 
GSA-SNP detected 27-94 hits for either the imputed or 
unimputed genotype dataset with GO gene sets, while 9-20 
hits were detected with KEGG gene sets. Consistently, more 
gene sets were hit with the scheme of using the second-best 
p-value of a gene than the best one. Previously, it has been 
recommended that one assign the second-best, not the best, 
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Fig. 1. Comparison of the gene scores calculated by two different
schemes. All 15,829 genes that were mapped by at least two single
nucleotide polymorphisms (SNPs) (either genotyped or imputed) 
were included in the high-volume scatter plot that displays the local
density of points by a false color representation. For a given gene,
the p-values of SNPs located inside or within 20 kb of the gene 
boundary were surveyed. The best (or second-best) of their -log- 
transformed values was assigned as the gene score. The X and Y 
axes represent the second-best and best values, respectively.

Fig. 2. Comparison of the gene scores from the unimputed and
imputed datasets. All 15,829 genes that were mapped by at least 
two single nucleotide polymorphisms (SNPs) (either genotyped or
imputed) were included in the high-volume scatter plot that displays
the local density of points by a false color representation. For a 
given gene, the p-values of SNPs located inside or within 20 kb 
of the gene boundary were surveyed. The best of their -log-trans-
formed values was assigned as the gene score. The X and Y axes
represent the gene scores from the unimputed and imputed 
datasets, respectively.

p-value to a gene due to a concern that the use of the best 
p-values of a gene may produce more false positives than the 
second-best one [4]. We compared the distribution of gene 
scores that were calculated based on the best and the 
second-best p-values using a high-volume scatter plot that 
represented the local density of points by a false color 
representation (Fig. 1). One may notice the densely po-
pulated points along the diagonal axis, meaning that the 
differences in gene scores were small for the majority of 
genes. Nevertheless, there were many genes off-diagonal; for 
these genes, the gene scores that were calculated with the 
best p-values were larger than those calculated with the 
second-best p-values. While this effect was negligible for the 
genes having high scores (p ＜ 10－4), many genes having low 
scores displayed large differences. The latter were genes that 
had only one SNP within its boundary plus 20 kb of padding 
standing out in terms of significance and the rest falling 
short. If the best SNP of a gene had been located within a 
strong linkage disequilibrium (LD) block, the second-best 
SNP would have been chosen from this block with a p-value 
close to the best one. On the other hand, if the best SNP is in 
weak LD with the second-best one, they would differ from 
each other considerably. Considering that Fig. 1 was based 
on the highly densely imputed genotypes, those genes that 
showed a large difference may have been located within 

narrow LD blocks or recombination hot spots where 
imputation may be invalid. Indeed, the genes that were not 
located within haplotype blocks showed larger differences in 
gene scores than those located within haplotype blocks 
(Supplementary Fig. 1). For those genes located within 
haplotype blocks, there were inverse relationships between 
the block size and the difference in gene scores 
(Supplementary Fig. 2). It is also possible that the apparent 
associations seen with the best p-values may have been due 
to random errors; assigning the second-best p-value to a 
gene may then reduce false associations. One may argue that 
the large difference between the best and second-best scores 
for some genes may be due to the small number of SNPs for 
those genes. If this is the case, there should be an inverse 
relationship between these two quantities. As shown in 
Supplementary Fig. 3, there is no such evidence.

Here is the rationale for the more hits made by GSA-SNP 
with the use of the second-best p-values than the best 
p-values in assigning them to a gene. GSA-SNP assigns a 
score to a gene set by averaging gene scores (-logP) of its 
member genes and calculates Z-statistic by subtracting the 
mean of all gene scores from the gene set score. Assigning 
the second-best p-value to a gene produces lower gene scores 
than assigning the best one. While this effect is more 
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pronounced with low-scoring genes, the high-scoring genes 
suffer little. Since the mean of all gene scores would also 
decrease by using the second-best p-values compared to the 
use of the best p-values, the resulting Z-statistic for a gene 
set that is composed of high-scoring genes would then 
increase, yielding more hits.

The GSA-SNP runs with p-values of the imputed 
genotypes consistently produced fewer hits than with those 
of the unimputed genotypes. Imputation guesses the 
genotype of an untyped marker and fills it in. The GWAS 
p-value of an imputed SNP can be either larger or smaller 
than those of the neighboring genotyped, unimputed ones. 
For the former cases, it would not change the best p-value 
that is assigned to a gene. On the other hand, for the latter 
cases, the best p-value that is assigned to a gene can get 
smaller. As shown in Fig. 2, the imputation increased the 
significance of many genes. This has the effect of reducing 
the number of hits for the GSA-SNP runs with the imputed 
dataset compared with the unimputed one, similar to the 
argument given above for the schemes of assigning the best 
or second-best p-values to a gene.

With the p-values of the imputed SNPs, i-GSEA4GWAS 
claimed 1,070 GO terms as significant, almost 40-fold more 
than GSA-SNP, which yielded only 27 terms. Even with the 
p-values of the original unimputed SNPs, i-GSEA4GWAS 
produced about 4.6 times more terms than GSA-SNP (283 
vs. 61). It appears that i-GSEA4GWAS unrealistically 
produced too many hits (about 1/3 of the input GO terms), 
hampered by the high proportion of false positives. This trend 
was much more pronounced with GO than KEGG, probably 
due to the more redundant nature of GO than KEGG. 

Unlike GSA-SNP, which reported fewer hits with the 
imputed dataset than the unimputed one, i-GSEA4GWAS 
produced about 5 times more hits with the former than the 
latter. Why did i-GSEA4GWAS perform even more poorly 
with the imputed dataset that should be more ideal in terms 
of marker density than the unimputed one? i-GSEA4GWAS 
assigns the best p-value to a gene and evaluates the gene set 
score by comparing the distribution of gene scores (-logP) of 
a gene set to that of all gene scores. The significance of the 
gene set score is estimated by the FDR, which compares the 
unpermuted distribution of the gene set scores with that of 
the gene set scores generated from a number of SNP- 
permuted datasets. The gene set score is multiplied by a 
factor, k/K, where k represents the proportion of so-called 
‘significant’ genes within the gene set and K represents the 
proportion of ‘significant’ genes of all genes. i-GSEA4GWAS 
defines the ‘significant’ genes as those that are mapped with 
at least one ‘top 5%’ SNP. This step is a unique feature of 
i-GSEA4GWAS, which has the prefix ‘i’ in its name. 
Generally, an imputed dataset has much higher marker 

density than the corresponding unimputed one (4.45-fold 
difference in our case). The so-called ‘top 5%’ SNPs will be 
more with the imputed dataset than the unimputed one 
(again, a 4.45-fold difference in our case). This corresponded 
to p-value cutoff of 0.047 in our case. The number of 
so-called ‘significant’ genes does not increase as much as the 
increase in the marker density: from 2,967 genes for the 
unimputed dataset to 4,156 genes for the imputed one in our 
case. The concept of augmenting gene set scores by the 
proportion of ‘significant’ genes may be useful, as demonstra-
ted previously in comparison with GSEA [5, 14]. However, 
the ‘top 5%’ threshold used by i-GSEA4GWAS may be too 
high, inflating the false positive rates. This inflation may be 
more pronounced with an imputed dataset - 1,000 more 
genes were treated as ‘significant’ with our imputed dataset 
than with the unimputed one. Probably, this is one of the 
main reasons for the particularly poor performance of 
i-GSEA4GWAS with the imputed dataset.

Discussion 

GSA is useful method in interpreting the result from a 
GWAS. A systematic evaluation of its performance is of 
paramount interest to the GWAS community, as the method 
is getting popular. Here, we compared the performance of 
two such methods using the common datasets and gene set 
databases. While GSA-SNP behaved predictably, 
i-GSEA4GWAS produced too many hits for most of the test 
settings. For example, i-GSEA4GWAS reported 3.8- and 
6.5-fold more hits, respectively, for GO and KEGG, with the 
imputed dataset than with the unimputed one. Imputation is 
such a useful practice that augments the power of a genotype 
dataset, and ideally, gene set analyses can benefit from it. 
Our study warns that one must be cautious in applying 
i-GSEA4GWAS to an imputed dataset. As we pinpointed 
above concerning the ‘top 5%’ threshold as the potential 
cause of the high hit rates of i-GSEA4GWAS, it would be 
interesting to re-evaluate its performance with lower 
thresholds. Currently, the threshold is not available for the 
users to change it. It would have been better if the user could 
choose it at will. For GSA-SNP, we recommend using an 
imputed dataset if at all possible. GSA-SNP allows the user 
to choose k in assigning the k-th best p-value to a gene. We 
recommend using k = 2 instead of k = 1, as the latter inflates 
the scores for some genes, diminishing the power of GSA.

Supplementary materials

Supplemetary data including three figures can be found 
with this article online at http://www.genominfo.org/src/ 
sm/gni-10-123-s001.pdf.
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